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In a recent paper Stanton and Cowan have generalized
the Pascal's triangle to a tableau. They have developed
several expressions for these numbers, using combinatorial
techniques. In the present paper we derive some of their
results very simply, by using the calculus of finite differences.
We further obtain the relations of these numbers to hyper-
geometric function and derive many relations among these
numbers which are useful in constructing the tableau.

1* Introduction* The triangular array of binomial coefficients,
well-known as Pascal's triangle, has been much studied. Basically,
it depends on the recursion relation

(1) f(n + l, r)=f(n, r) + f{n, r - 1) .

In a recent paper Stanton and Cowan [5], have considered a generali-
zation of this situation by defining a tableau by the recurrence
relation

(2) g(n + 1, r + 1) = g(n, r + 1) + g(n + 1, r) + g(n, r) .

This formula, together with the boundary conditions, g(n, 0) =
g(0, r) = 1, uniquely determines g(n, r). The lower half of the first
portion of this tableau is presented in Table 1, the upper half can
be obtained by symmetry in n and r (see § 2).
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g(n, r)

321
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Stanton and Cowan [5], have developed several expressions for
these numbers g(n, r), and indicated that they have a further com-
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binatorial interpretation, namely, g(n9 r) is the volume of an r-sphere
in w-space under the Lee metric. In this paper we obtain some of the
results of Stanton and Cowan by using the calculus of finite differences
and obtain some additional properties of the function g(n, r).

2 Main results* In order to obtain an explicit formula for
g(n, r) the calculus of finite differences, [4], is efficacious. Let E
denote the shift operator such that EU(r) = U(r + 1), and Δ denote
the difference operator defined by Δ U(r) = U(r +1) - U(r) = (E-1) U(r).

We use the convention, [1], that the binomial coefficient ί^ j is

difined only for r an integer, and that ( ™ j vanishes for r < 0, and

for r>n.

With this notation we prove the following results.

LEMMA 1.

(3) ( , ) 2 ( ) f ) 2 ( )(

Proof. From (2), we get

(4) Δg(n + 1, r) = (E + l)g(n, r) ,

which yields,

ln\
g(n, r) = (E+ l)nJ~ng(0, r) = Σ ]EaΔ-*g(0, r)

W 1 > since Δ'(r\ - 1 (see (3)) ,

, ( ) ί )Σi( )( r

« \a)\ n J « \ a )\n — a

LEMMA 2.

' n\l r
(5)

- • • • -τ \ccl\a

Proof. From (4), we have

( E -4- l

which can be written as,
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g(n, r) = (1 + 2J-ψg(0, r)

s(W*fir(0, r) - Σ f )
<* \aI «• \aj\a

It is obvious that g(n, r) is symmetric in n and r. The ίfective
upper limit of the summations in (5) is at K = min. (n, r).

In view of the fact that the numbers g(n, r) possess some applica-
tions, in addition to their intrinsic interest, it may be of interest to
discuss some additional properties, and their relation to some well-
known functions.

LEMMA 3.

( 6) g(n, r + s) = Σ ff(k, r){g{n - k, s) - g(n - k - 1, s)} .

Proof. It is known, [5], that g{ny r) is the coefficient of xr in
the expansion of (1 + x)n/(l — x)n+1. Or, since g(nf r) = g(r, ri), we
might use the coefficient of xn in (1 + x)r/(l - x)r+1. Let /r(α?) =

(1 + x)r/(l - x)r+1. Then it is easy to verify that

( 7 ) (1 ~ X)fr(x)fs(x) = fr+S(x) -

Now equate the coefficients of xn in the expansion of (7) and we get
the desired result.

If we consider the identity (7) as

<8) fr(x)fs(x) = (1 - xΓfrM

and equate the coeflBcients of xu, we get

Σ ffQe, r + s) = Σ g(k, r)g(n - k, s) .
Λ0 A0

In the following lemma we prove that g(n, r) is a special case
of the hypergeometric function 2FX defined by

where,

(a)k = a(a + 1) (a + k - 1) .

LEMMA 4.

( 9 ) 9(n,r) = iF1(-n, - r ; l ; 2 ) .

Proof.
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^ 2anlrl

Σ

Note that the diagonal sums become, g(n, n) = 2F1(—nf —n; 1; 2).
In the case of binomial coefficients such sums provide the Fibonacci
numbers.

LEMMA 5.

(10) g(n, r) — {ng{n — 1, r) — rg(n, r — 1)} , n Φ r .
n — r

Proof. We have,
In -1\I r\

ng(n - 1, r) - rg(n, r - 1) = n Σ 2α - r Σ 2C

- Σ 2"(n)l T )(n -r) = (n- r)g(n, r) .
\aj\aj

For actual computations of #(w, r) the result (10) is as easy as
the basic definition (2).

The result of Lemma 5, can also be obtained from the correspond-
ing identity for hypergeometric functions, (6 — a) zF^a, 6; c; x) +
a 2F1(a + 1, 6; c; x) — b ̂ ( α , 6 + 1; c; x) = 0 where now a = — n, b =
— r, c = — 1, and x = 2.

LEMMA 6.

(11) g(n, r) = -l—^—g(n - 1, r) + -^—-—^(^ - 2, r)

(12) - *±±λg(n9 r - 1) + ZJzJL.g(nf r - 2) .
r r

Proof. The result (11) follows from the following identity for
hypergeometric functions,

(c — cήzF^a — 1, b; c; x) + (2α — c — ax + 6a?) 2i
Γi(α, 6; c; α)

+ a(x - 1) 2Fx(α + 1, 6; c; a?) = 0

where now a — —n, 6 = — r, c = 1, and x = 2. Similarly the result
(12) can be obtained from the symmetry or from the corresponding
identity for hypergeometric functions, viz,

(c — b)2Fx{ay b — 1; c; x) + (26 — c — bx + ax) zF^a, 6; c; x)

+ 6(a? - 1) 2F1(af b + 1; c; x) = 0 .
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Lemma 6 is useful to compute the numbers g(n, r) in any one
column or row of the tableau and for this purpose has the advantage
over the formulae (2) or (10) of Lemma 5.

Some more relations between the numbers g(n, r), which can be
easily obtained from the corresponding identities for hypergeometric
functions, are the following.

(n + r + l)g(n, r) + ng(n — 1, r) - (r + l)g{n, r + 1) = 0 ,

or equivalently,

(n + r + l)g(n, r) + rg(n, r - 1) - (n + l)g(n + 1, r) = 0 ,

and,

(n + l)g(n + 1, r) - (r - n)g(n, r) — (r + l)g{n, r + 1) = 0 .

3* Additional remarks* It may be noted that the combinatorial

interpretation of g(n, r); the value Σ«21 J J , is the volume (i.e.,

the number of lattice points in Euclidean %-space within a regular
cross-polytope) of a sphere of radius r in ^-dimensions (or a sphere
of radius n in r-dimensions) using the Lee metric as deduced by
Golomb and Welch [3]. Golomb [2], has also derived the generating
function for g{n, r),

= Σ Σ 9(n9 r)xnyr

1 — x — y — xy ™=o r=o

which may be used to evaluate g(n, r) either explicitly or asymp-
totically and is simpler than our results. Applications of these num-
bers in sphere packing, coding metrics, and chess puzzles are also
described by Golomb [2]. Thus the numbers g(n, r) have many
applications in addition to their intrinsic interest. The relationship
with the hypergeometric functions further illustrates their usefulness.

Thanks are due to the referee for pointing out the reference [2].
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