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This is a solution to the following problem: Which classes
of Abelian groups are closed under taking subgroups and
direct limits. (Problem 6(a), L. Fuchs, Infinite Abelian Groups,
I, A — P.) Each such class is uniquely determined by its
subclass of finitely generated Abelian groups, which in turn
can be described by a set of numerical invariants.

In like manner, an analogue for modules over a Dedekind
domain is also obtained.

Throughout this paper, we shall make no distinction between
isomorphic copies of the same Abelian group. Thus when we say that
an Abelian group belongs to a class we mean that the former is
isomorphic to a member of the latter.

In many places, proofs of our results are omitted. This is because
our discussion is of a constructive nature. As soon as a construction
is carried out, the fact that it has the desired property becomes self-
evident. Thus a formal proof is not necessary.

2* A reduction of the problem* Suppose Γ is a class of
Abelian groups satisfying:

(I) AeΓ, and B is a subgroup of A, implies BeΓ.
(II) If {Aay πaβ) is a direct system with Aa e Γ, then (lim Aa) e Γ.

Define Γo to be the subclass of finitely generated Abelian groups in
Γ. Suppose Φ is a class of finitely generated Abelian groups satisfying
(I), define Φ as follows: A e Φ if there is a direct system {Aa, πaβ} s.t.

AaeΦ

πaβ are monomorphisms

lim Aa — A

(i.e., an Abelian group A eΦ if it is the union of a directed (by in-
clusions) family of finitely generated subgroups each of which belongs
to Φ).

LEMMA 2.1. If {Aa, πaβ} is a direct system s.t. Aa e Φ, then
(lim Aa) e Φ.

Proof. For a fixed a, among the subgroups (Ker πaβ) of Aa, (β Ξ>
a), there is a maximum one, (because Aa is finitely generated). The-
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refore, there is a' :> a s.t. (Ker πaa,) = (Ker πaβ)Vβ ^ a. Let A'a =

Aα/(Ker τταα,), then for 7 ^ <x, π α r : Aα —• Ar induces a monomorphism

ττlr: A!a—>A'r. Obviously {A'a, π'ar} is a direct system and QιmAr

a) =

(lim Aα). Therefore, (lim Aβ) e Φ.

THEOREM 2.2. If Γ is a class of Abelian groups satisfying (I),
(II), ίΛβn,

( i ) Γo satisfies (I),
(ii) (fo)=Γ.

If Φ is a class of finitely generated Abelian groups satisfying
(I), then

(iii) Φ satisfies (I), (II),
(iv) (Φ)Q = Φ.

Proof, (i) is obvious.

(ii) H AeΓ, let {Aa} be the family of all finitely generated
subgroups of A, then each Aa e Γo. Since A = \J Aa, A e (ΓQ).

(iii) Φ satisfies (I): Suppose AeΦ, and B is a subgroup of J..
We have a direct family {Aa} of subgroups of A s.t.

AaeΦ ,

A = \JAa.

Let Ba = B f) Aa, then

Hence BeΦ.

Φ satisfies (II): Suppose we have a direct system {Aa, πaβ}a>βeΛ s.t.

AaeΦ ,

A = lim Aα .

For each a, we have a directed family {Aα,α}αe^ of finitely generated
subgroups of Aa s.t.

Aa>a e Φ ,

Let A = {(a, a)\aeΛa} and define (a, a) ̂  (/9, b) if

τr^(Aα,α) S Aβtb .

We claim that if is a directed set: Given (a, α), (/9, 6) e Z, there
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is 7 e A s.t. a, β S 7. Since Aa>a finitely generated and Ar = \J Ar,e,
there is c'eΛr s.t. παr(Aα,α) £ AϊiC,. Likewise there is c"eAr s.t.
πβr(Aβ,b) S -Ar.c Choose ceAr s.t. c', c" ^ c, then (α, α), (/3, b) <£ (T, C).

For (α, α) ^ (/S, 6), define

by π^a)Λβ>b)(x) = πaβ(x)Vx e Aa,a, then

is a direct system with

lim Aa,a = A .

Therefore, AeΦ.
(iv) If A G (Φ)o, then there is a directed family {Aa} of subgroups

of A s.t.

AaeΦ ,

A = \JAa.

Since A is finitely generated, A = Aa for some a. Therefore AeΦ.

3. A further reduction. Let Σ be the class of all finitely
generated Abelian groups. For A, B G Σ, A <̂  B means A is (isomorphic
to) a subgroup of A. Clearly this is a partial ordering on Σ. A
subclass θ of J? is called an ideal if it satisfies (I) and

(III) A,Beθ implies there is Ceθ s.t. A, B £ C.

LEMMA 3.1. The union of a directed (by inclusions) family of
ideals is an ideal. In particular the union of a linearly ordered family
of ideals is an ideal.

The proof is obvious.

Suppose Φ is a class of finitely generated Abelian groups satisfying
(I), we use Φm to denote the family of all maximum ideals in Φ, (i.e.,
those which are maximum among ideals contained in Φ). Suppose Δ
is a family of ideals. We say that Δ is irredundant if none of its
members is contained in another member, (i.e., each member is max-
imum in the family). We say that A is closed if given an ideal Θ' £
\JΘeAΘ there is θ" e A s.t. Θr £ θ". We define φ(A) = \JΘ&ΔΘ.

THOREM 3.2. If Φ is a class of finitely generated Abelian groups
satisfying (I), then

( i ) Φ = Φ(Φm),
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(ii) Φm is irredundant,
(iii) Φm is closed.
If A is a closed irredundant family of ideals, then
(iv) Φ{Δ) satisfies (I),
(v) (φ{A))m = A.

Proof, (i) and (iii) are obtained through a routine use of Zorn's
Lemma.

(ii) and (iv) are obvious.
(v) is a consequence of the definition of closeness.

THEOREM 3.3. If Δ is a closed, irredundant family of ideals,
and Φ = Φ(Δ), then

Proof. Clearly Φ 2 {JΘSJΘ.

If AeΦ, then there is a directed family {Aa} of finitely generated
subgroups of A s.t.

AaeΦ ,

Define ΦA as follows: BeΦA if B <; Aa for some a. Clearly ΦA is
an ideal contained in Φ. Since A is closed, there is Θ e A s.t. ΦA S
β. Clearly AeΘ.

Therefore, Φ = \JΘ&β.

4* Arithmetizatiom Let
& = the set consisting of 0 and all positive integral powers of

every prime number,
— the set of all nonnegative integers,

Ω = the set of all mappings μ: & —• <Λ^ satisfying the condition:
μ(pm) ^ μ(pn) whenever m ^ n, (Jy~ is ordered in the obvious manner),

Ωo — the set of all μ e Ω satisfying the conditions: (i) μ(x) Φ co\fχ e
^ (ii) μ(x) = 0 for almost all xe^.

For λ, μ e Ω, λ ^ μ means X(x) ̂  μ(x)Vx e ̂ . Obviously this is a
partial ordering on Ω. Define χ: Σ —> Ωo as follows: For AeΣ, A =
-Ai © 0 <Aβ, where each Ay is isomorphic with Z/xZ for some x e
&. Set

= the number of A3 ^ ZjxZ.

Clearly χ is an order isomorphism. Suppose that Θ is an ideal in Σ.
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Define χ(Θ) e Ω as follows:

χ(Θ)(x)=hu.h.{χ(A)(x)\AeΦ}.

For μeΩ, define

Suppose that Δ' is a subset of Ω. We say that Δ' is irredundant if
every element of Δf is maximum in Δ'. We say that Δf is closed if
the following condition is satisfied: Given ωeΩ with the property
that for each μ e Ωo, s.t. μ <: ω, there is <?' e Δ' s.t. μ <̂  δ', then there
is 8 e Δ' s.t. ω ̂  δ.

LEMMA 4.1. If Θ is an ideal in Σ and A e Σ s.t. χ(A) <Ξ χ(Θ),
then AeΘ.

Proof. Since Ae Σ, there are xl9 , xs e & s.t. χ{A){x) = 0 except
a; = a?i, •••, αβ. Since χ(A) ̂  χ(θ), for each xj9 there is A^ GΘ s.t.

Since θ is an ideal, there is A' eθ s.t.

Λlf Au ^ A' .

Obviously χ(A) ̂  z(^')» ί eM A ^ A', and hence A e θ.

COROLLARY 4.2. Given two ideals θ, θ', χ(θ) = χ(θ') iff β = θ'.

LEMMA 4.3. For μeΩ,

(i) Φ(μ) is an ideal,
(ϋ) χ(Φ(μ))=μ.

Proof, (i) Φ(μ) satisfies (I) is obvious.
Φ(μ) satisfies (III): Suppose A,BeΦ(μ). Define λ: 0> — ̂  by

λ(x) - max

Vα; G ̂ . Obviously λ e βo> and X ̂  μ. Since χ is an isomorphism,
there is Ce Σ s.t. χ(C) = λ. Obviously A, B ^ C, and CeΦ(μ).

(ii) According to the definition, for ^ e ^ A e Φ ^ ) , we have
χ(A)(x) g j φ ) . Therefore, χ(Φ(μ)) ̂  ^.

If χ(Φ(μ)) Φ μ, then there is x e & s.t. χ(Φ(μ))(x) < μ{x). Suppose
χ(Φ(μ))(x) = n. (We cannot have χ(Φ(μ))(x) = °° because oo < ^(a ) does
not hold.) Let A = (Z/a?Z) 0 0 (Z/xZ), (n + 1 copies), then
χ(A) (a?) = ̂  + 1 ̂  i"(aj), χ(A)(ίδ) = 0 ̂  (̂̂ )V2; ^ x. Therefore, A e Φ(μ).
This contradicts the assumption that χ(Φ(μ))(x) = n. Hence χ(Φ(μ)) — μ*
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THEOREM 4.4. If A is a closed irredundant family of ideals in
Σ, then {χ(θ)\Θ e Δ) is

(i) closed,
(ii) irredundant.

If Af is a closed irredundant subset of Ω, then {Φ(μ) \ μ e A'} is
(iii) closed,
(iv) irredundant.

The proof is obvious.

Combining all the earlier results together we have

THEOREM 4.5. (i) If Δf is a closed, irredundant subset of Ω, then

u
μeΔ'

is a class of Abelian group satisfying (I) and (II).
(ii) If Γ is a class of Abelian groups satisfying (I) and (II), then

μeΔ'

where A' = {χ(Θ)\Θ e (Γ0)m}.

5* An explicit construction. We shall adopt the following
notations:

T(A), A is an Abelian group: The torsion part of A.
T0(A):A/T(A).
TP(A), p is a prime number: The ^-primary component of T(A).
rank (A): the number of summands in the direct sum decomposi-

tion of the injective envelope of A into indecomposable subgroups.

THEOREM 5.1. For μeΩ, Φ(μ) consists of Abelian groups A subject
to the following conditions:

(i) If μ(0) = co, then T0(A) can be arbitrary.
If μ(0) Φ oo, then rank (T0(A)) ^ μ(0).
(ii) For each pk e &>, if μ(pk) = oo, then pk~ιTp(A) can be arbitrary*
If μ(pk) Φ oo, then rank (p^T^A)) rg μ{pk).

Proof. This is obvious. (Observe that these conditions are pre-
served under taking subgroups Γo( ),TP{) and direct limits.)

REMARK 5.2. In view of Theorem 4.5, there can be classes of
Abelian groups satisfying (I) and (II) whose structures are extremely
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complicated. However, almost all known examples take the simplest

possible form, viz., they are Φ{μ) for certain μeΩ, e.g.,
(1) The class of all (p-primary) co-cyclic groups is given by

(0, otherwise.

(2) The class of all locally cyclic groups is givin by

x = 0 , / x 0, x = 0

0, x Φ 0 , 1, x Φ 0 .

(3) The class of all torsion groups is given by

(0, x = 0 ,
μ(x) = \

(oo, X = 0 .

(4) The class of all torsion-free groups is given by

>, x = 0 ,

(5) The class of all groups is given by

μ(x) = oo vx e & .

(6) The class of all groups annihilated by n is given by

χ \ n ,

(0, x\n .

REMARK 5.3. Φ(μ) generalizes the class of all subgroups in a
given Abelian group. In fact, for a fixed cardinal number ^ , the

members of Φ(μ) with cardinality ^ ^ are exactly the subgroups in
the direct sum constructed as follows:

(a) For each prime number p, if

μ(p) = ..

where kλ< k2< < kr, (including r = 0 to mean μ(p) = = λ j , we
put in the following summands:

λ r + 1 copies of Z(p°°) ,

(λy - λ i+1) copies of Z/pk% j = 2,-- ,r,

i — λ2 copies of Z/pklZ, (\ < oo), or

^ copies
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(in case r = 0, \ = oo these are fc$ copies of Z(p°°)).
(b) We also put in the following summands:

\μ(0) copies of Q, (μ(0) < oo), or

(K copies of Q, (μ(Q) = 0 0 ) .

REMARK 5.4. One may wish that a class satisfying (I), (II) can

be expressed either as a union of a finite number of Φ{μ) or as a
family of such which are mutually disjoined. The following example
shows that this is not always possible.

Let pl9 p2, be a set of prime numbers and μu μ2, e Ω be
given by

3 = i or k = l ,

Obviously Γ — \J Φ{μι) satisfies (I), (II), and cannot be decomposed
into finite or disjoined union in the above mentioned way.

REMARK 5.5. The definition of closed irredundant subsets of Ω
is closely related to the concept of closed sets in a topological space.
For an irredundant subset Δ of Ω, let

Δf = {ω e Ω \ ω <̂  δ for some δ e Δ) ,

then A is closed iff the least upper bound of every net in Δf is still
in Δr.

6. A generalization. The results in the previous sections can be
extended to modules over a Dedekind domain. (For basic properties
of a Dedekind domain we refer to [2].) This is carried out in the
following. Proofs are omitted because they are essentially the same
as the case of Abelian groups. We adopt the following notations:

R: A Dedekind domain.
&\ The set of all primary ideals in i?, (i.e., 0, and powers of

nonzero prime ideals).
^A^\ The set of all nonnegative integers.

Ω: The set of all mappings μ: & —> Λ~ satisfying μ(x) :> μ{y)
whenever x\y,x,yφQ.

Ωo: The set of μ e Ω satisfying: (i) μ{x) Φ oo, (ϋ) μ(χ) = 0 for almost
all xe^.

T(A), (A is an iϋ-module): The torsion part of A.
TQ(A): A/T(A).
TP(A), (p is a prime ideal of R): The ^-primary component of
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T(A).
rank (A): The number of summands in the direct sum decomposi-

tion of the injective envelope of A into indecomposable iϋ-modules.
For λ, μ e Ω, λ <: μ means that X(x) ^ μ(x)Vx e&*. A subset Δr

of Ω is irredundant if every element of Δ' is maximum in Δ'. It is
closed if the following condition is satisfied: Given ω e Ω with the
property that for μ e Ωo, μ ^ (o implies there is δr e Δf s.t. μ ^ <?', then
there is δ e Δ' s.t. ω ^ δ.

For μ € Ω, define Φ{μ) as the class of all iϋ-modules subject to the
following conditions:

(i) If μ(0) = oo, T0(A) can be arbitrary.
If μ(0) Φ oo, rank (T0(A)) ^ μ(0).
(ii) If μ(pk) = oo, (p is a prime ideal of R), p^TpiA) can be

arbitrary.
If μ(pk) Φ oo, rank {pk~ιTv{A)) ^

THEOREM 6.1. (i) If Δ' is a closed, irredundant subset of Ω, then

is a class of R-modules closed under direct limits and submodules
formation.

(ii) Every class of R-modules closed under direct limit and sub-
module formation can be obtained in this manner. Δf is uniquely
determined by the class.
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