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Let A be a left noetherian ring of finite left global dimen-
sion. Assume that A is quasi-local, i.e., that A modulo its
Jacobson radical J(A) is a simple artin ring, and suppose that
for some left Ore denominator set S contained in A, Σ = S~λA
is a left artin ring. Then Σ is a simple artin ring. More
precisely, if A/J(A) = Mn(K), the ring of n by n matrices over
a division ring K9 then there exists an integer m dividing n
such that A = Mm{Δ) and Σ = Mm{L), where L is a division
ring and A is an order in L.

A corollary of this is that if the above A is local, then
Σ is a division ring. Another corollary is that if F is a field
and A is a left noetherian left order in MP(F), and if A is
quasi-local and 1. gl. dim. A < oo, then A=MP(R), where Ra F
is the center of A,

These results were originally established by the author in a less
general setting (some restrictions were placed upon the center of A).
The present form of Theorem 4 and its proof are due to George
Bergman, whose help is greatly appreciated.

It seems natural to ask whether it is necessary to assume that
Λ is an order in an artin ring. It is well-known that a left noetherian
left hereditary ring has a left artinian left quotient ring [1]. Small
[2] has given an example of a two-sided noetherian ring of global
dimension two which is not an order in an artin ring. His ring is not
quasi-local. We show that A has an artinian left quotient ring if A is
quasi-local, left noetherian, and has left and right global dimension two.
For rings of global dimension greater than two, the question is open.

Preliminaries* All rings under consideration have units and all
modules are unital finitely generated left modules. By gl. dim. A we
mean the left global dimension of A. We now recall some standard
definitions. A multiplicatively closed subset S, all of whose members
are regular (i.e., neither left nor right zero-divisors) in A, is called a
left Ore denominator set if the left Ore condition is satisfied: If αe
Λ and se S then there exist aγe Λ and s ^ S such that s^a = a^. It
is well-known that under this condition, S~λA = {s^a | s e S, a e Λ) is a
ring containing A, and in which (clearly) the elements of S are inver-
tible. S^A is called the left quotient ring (or left ring of fractions)
of A with respect to S, and A is called a left order in S~ιA.

1* Some lemmas*
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LEMMA 1. Let Γ be a quasi-local artin ring of finite global
dimension. Then gl. dim. Γ — 0, and thus Γ is simple.

Proof. Since the global dimension of Γ is finite, it equals the
finitistic global dimension of Γ. We claim the latter is zero since Γ
is quasi-local and artin. (Though this fact is perhaps well-known, we
include a proof for the sake of completeness.) It clearly suffices to
show that if the projective dimension of a module M is <̂  1, then M
is projective. Since Γ is artin, projective covers exist, and so we
may assume an exact sequence 0—>P1-^P0 —>M—>0 with the P/s
projective and Im (Px) c J(Γ)P0. Now since Γ is artin, J(Γ) is nilpotent,
and in particular has nonzero left annihilator. So Px is not a faithful
i?-module. But over a quasi-local ring a nonzero projective module
is a projective generator and thus faithful. Hence Px is zero, and M
is projective.

LEMMA 2. Let Γ be a left noetherian ring of finite global
dimension. Let S be a left Ore denominator set for Γ, and let Ω =
S~ιΓ. Then if P is a projective Ω-modulef there exist finitely generated
projective Γ-modules G and H such that P 0 (Ω ® G) ^ Ω 0 H.

Proof. If M is any finitely generated β-module, there is a finitely
generated Γ-module N such that M = S^N = Ω (g) N. So let P =
Ω (x) Q, and let

0 >Fn >.. F0 >Q >0

be a finite Γ-projective resolution of Q. Tensor ing with Ω (which is
/'-flat) we obtain an β-projective resolution of P, and since P is pro-
jective, this sequence splits. Thus P 0 ί ( β ( x ) F2i+1) ^ 0 Σ (Ω (x) F2i).
Letting G = 0 2 jP2ί+1 and H = 0 Σ F2i yields the desired conclusion.

REMARK. In the language of Grothendieck groups, this lemma
just says that the natural map K0(Γ) —> K0(Ω) is surjective. (If R is
a ring, K0(R) is the abelian group defined by one generator [P] for
each isomorphism class of finitely generated projective left i?-modules
P, and the relations [P@Q] = [P] + [Q].)

The next lemma is a well-known consequence of Nakayama's
Lemma and we omit the proof.

LEMMA 3. Let Γ be a ring. Let Γ = Γ/J(Γ).
(i) If P and Q are finitely generated projective Γ-modules such

that Γ ®P^Γ (x) ζ), then P& Q.
(ii) If G is a finitely generated projective Γ-module such that
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G φ (Γ (x) Q) P& Γ ® P, where P and Q are finitely generated projective
Γ-modules, then there exists a projective Γ-module Qf such that G&
Γ®Q' and P

2* The main results* We can now prove the main theorem of
this paper.

THEOREM 4. Suppose Λ is a quasi-local left noetherian ring
with Λ/J(Λ) & Mn(K), K a division ring, such that gl. dim. A < oo.
Suppose S is a left Ore denominator set for A such that the left ring
of fractions Σ = S^A is artinian.

Then Σ is simple artinian. In fact, there exists an integer m
dividing n such that A has the form Mm(A) and Σ has the form
Mm(L)y L a division ring and A an order in L.

Proof. Let P denote the minimal projective module of A/J(A).
Then Pn (the direct sum of n copies of P) is free of rank 1. If Q is
a finitely generated projective A -module, then A/J(A) ®Q ^ Pr for
some r. Choose Q Φ 0 so as to minimize r. Using Lemma 3, part
(ii) and the fact that every finitely generated projective ^//(^-module
is a direct sum of copies of P, it is now easy to see that every finitely
generated projective A -module is a direct sum of copies of Q. In
particular, A ^ Qm for some m. Since pn ^ A/J(A) ̂  (P r)m, it follows
that n — rm. Now let us, for the moment at least, make the con-
vention that homomorphisms of left i?-modules are written on the
right, and composed accordingly. Then A s End^ (A) ~ Endj (Qm) ~
Mm{Δ), where A — Endj (Q). (If we write homomorphisms on the left,
we should write A = End^ (Q)opp.)

Now consider the artin ring Σ = S~XA. Note that the number
of prime ideals of Σ = the number of prime ideals of Σ/J(Σ) = the
rank of KQ(Σ/J(Σ)) (as an additive group; by the structure theory
for modules over a semi-simple ring) = the rank of K0(Σ) (by the
lifting of idempotents). By Lemma 2 this is ^ the rank of K0(A),
which by Lemma 3, part (i), is <g the rank of K0(A/J(A)). But this
last term is 1 since A/J(A) is simple artinian. Hence Σ has precisely
one prime ideal and is thus quasi-local.

Since Σ is left Λ-flat, gl. dim. Σ <: gl. dim. Λ. By Lemma 1, Σ
will now be simple artin, i.e., it will have the form Mm,(L) for some
division ring L and some integer m'. We shall show that m' = m.
Let V be the minimal projective ^-module. Then the free I'-module
of rank 1 is isomorphic to Vm'. We have seen above that the free
yl-module of rank 1 is isomorphic to Qm. For some r, Σ (x) Q e& Vr.
Now Vm> & Σ ~ Σ (x) A ~ Σ (x) Qm ^ (Σ (x) Q)m ^ Vrm. Hence m' = rm.
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On the other hand, by Lemma 2, there exist integers a and b so
that F 0 (Σ (x) Qa) ** Σ <g) Q\ Hence 7 φ f α ^ F r δ, and so 1 + ra = r
b. Thus r = 1 and m' = m. Therefore, we can take for the matrix
units of Σ the images of those of A, and this gives a map Δ —> L
inducing the map A—>Σ. Since A is an order in Σ, Δ is an order in
L [4, Theorem. 3.3].

Taking n = 1 in the above theorem we get:

COROLLARY 5. Suppose that A is a local left noetherian ring of
finite (left) global dimension and S is a left Ore set for A such that
Σ = S~ιΛ is artinian. Then Σ is a division ring.

Another immediate consequence of Theorem 4 is:

COROLLARY 6. Suppose F is a field, and A a left noetherian
order in MP(F). If A is quasi-local and gl. dim. A < oo, then A^
MP(R), where RaF is the center of A.

Proof. Since p is the matrix-rank of MP{F), p will be the m of
Theorem 4 and F will be the L.

3* A conjecture* It would be nice to be able to remove the
hypothesis, in Theorem 4, that A is an order in an artin ring. Thus
we raise the

Question. Is every left noetherian quasi-local ring of finite global
dimension a left order in an artin ring?

The evidence is meager. It is known that any left hereditary
ring with maximum condition on left annihilators has an artinian left
quotient ring (see for example [1, p. 243]). On the other hand, Small
[2] has produced a two-sided noetherian ring of global dimension two
which is neither a left nor a right order in an artin ring. However,
this ring is not quasi-local. We conclude this paper with an affirmative
answer for global dimension 2.

PROPOSITION 7. Suppose A is a left noetherian ring such that A
is quasi-local and left and right gl. dim. A — 2. Then A is a left
order in an artin ring.

Proof. By Small [3, Theorem 2.11] it suffices to establish the
regularity condition: If x + N(A) is regular in Λ/N(A) (where N(A) is
the maximum nilpotent ideal of A) then x if regular in A.

So assume that x + N(A) is regular in A/N(Λ), and let l(x) be the
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left annihilator of x in A. Since the sequence

0 > l(x) > A -ϊ-> A > A/Ax > 0

is exact and gl. dim. A = 2, l{x) is Λ-projective.
Now by the regularity of x + iV(Λ) in Λ/N(A), we have Z(#) <ϋ N{Λ).

So, as iV(Λ) is nilpotent, l(x) has nonzero left annihilator. But, as we
observed in the proof of Lemma 1, a nonzero protective module over
a quasi-local ring is faithful. Hence l(x) — 0, that is, x is left regular
in A. We have not used the one-sided Noetherian hypothesis in
establishing left regularity (it is wanted only for applying SmalΓs
result), so by the same argument x is right regular, as required.
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