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DoroN RAVDIN

In this paper some notions of local homogeneity for metric
space are investigated. A theorem on convergence of a se-
quence of homeomorphisms to a homeomorphism is proved
and applied i.e., to show that for every two countable and
dense subsets A and B of the Hilbert space /, there exists a
homeomorphism H of I, onto itself such that H(A) = B.

Let {h.)};-, be a sequence of homeomorphisms of a space X onto
itself and let

(1) Hn:hnohn—1°°"°h1

denote their composition.

In this note conditions—similar to those obtained by J. L. Paul
in [4]—are given under which H = lim,_.. H, exists and is a homeo-
morphism of X onto itself. The obtained results are applied to
investigate various types of local homogeneity and to prove that if
X =1, is the Hilbert space then X has the following property: For
every two countable and dense subsets A and B of X there exists a
homeomorphism H of X onto itself such that H(A) = B.

A space X having this property was called by R. B. Bennett
countable dense homogeneous (see [1]).

A proof that the Euclidean n-space E™ is countable dense homo-
geneous can be found in the book of W. Hurewicz and H. Wallmann
“Dimension Theory” on p. 44.

In this paper the notion of countable dense homogeneity in the class
of complete metric spaces is investigated and results—similar to those
given by R. B. Bennett in [1] for locally compact spaces—are obtained.

In the sequel X denotes a metric space with metric o, B(x, r)—
the open ball with radius » centered at z, 6(V)—the diameter of a
subset ¥V of X and nbd stands for neighborhood. We also always
assume that d(X) < 1.

1. In this section conditions are given under which a sequence
of homeomorphisms H, of X onto itself converges to a homeomorphism
H of X onto itself. Theorem 1 is a generalization of a similar theorem
proved by J. L. Paul, (see [4]). We shall use the following two
definitions:

DEFINITION 1. A sequence {U,}7, of open subsets of X is said
to be proper if
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(2) UNU;,# @ =—U,D0; for i<j.

DEFINITION 2. A homeomorphism % of X onto itself will be called
of type (§, r, U) where 0 < £ < 1,1 < r are constants and U is an open
subset of X if:

(3) h|yy is the identity mapping
and
(4) o(h(z), k(y)) > &lo(x, w)]- for all =y in X.

THEOREM 1. Let X be a complete metric space and {U,}i-, a
proper sequence. Let {h,}3-, be a sequence of homeomorphisms of X
onto itself where h, is of type (&., 1., U,). If

(5) (U, < &\ &5t vun grnmterz, <2_1;>m2.,.,,"

then H = lim,_. H, exists and is a homeomorphism of X onto itself.

Proof. The proof being similar to Theorem 1 in [4] we shall
confine ourselves to showing only that H is continuous and one-to-one.

By (3), (4), and (5) o(h. (%), v) <1/2". Hence p(H,(x), H,_.(x)) <1/2".
The space X being complete it follows that H(x) = lim,_. H,(z) exists
for all x and that H is continuous. To show that H is one-to-one
let # = ¥y be points of X. There are two cases:

Case 1. There exist integers j(x) and k(y) such that

Hy(w) = Hj,(x) for 1> j(x) and H,(y) = Hy,(y) for m > k(y) .
Then for g = max {j(x), k(y)} one has

H(.’)C) = Hg(x) 7 Hy(y) = H(y) .
Case 2. For at least one of the points # or ¥, (say z), there

exists a sequence m, < m, < --- such that H,  (z)ec U,,. Letp=m;
be an integer of this sequence such that

(6) (%)Tﬂ'z.‘-'fp—l < [p({l}, y)]"l"Z""'p~1 .

By (2) and (3) the points H,_,(x) and H(x) belong to U,.
By (4) we have

O(H, (), H,i(y)) > §,i80750 -+ 057572 o, )] 77770
Now by (5) and (6) o(U,) <O0(H,.(x), H,_.(9))-
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Therefore, H, (y) ¢ U,.,, and thus also H(y)¢ U,_,. Since H(v)e U,.,
it follows that H(x) = H(y)

REMARK 1. Theorem 1 remains true if the requirement that X is
complete is replaced by requiring the relative compactness of the U.,.
The special case where », =1 (n = 1,2 ---) is Theorem 1 of [4] and
the proof is the same.

The following theorem shows a relation between the types (see
Def. 2) of the homeomorphisms {,}7-, and of the limit H = lim, .. H,
of their superposition.

THEOREM 2. Let {U,} be a sequence of open subsets of X such
that U,2U,.(n =1,2-++) and let {h,)3-, be a sequence of homeo-
morphisms of X onto itself. If h, is of type (1/2, 1, U,) and

1
(7) B(Uﬂ)<4—n.

Then H =lim,..H, is a homeomorphism of X onto itself of type
(1/4, 2, U).

Proof. By Theorem 1, H is a homeomorphism of X onto itself
and it suffices to show that

(8) o(H(w), H(y)) > —i—[p(x, W forall =y,

Since by assumption 6(X) < 1 there exists an integer n, = 1 such
that (1/2) < o(z, y) = d = (1/2)~*. By (4) used for &£, =1/2,r, =1
we have

o, (&), By () > (5)7d -

Since by (7) 0(U,,..) < 1/4*", the points H,(x) and H, (y) are not
both in U, ;.

If both points are outside U, ., then by U, > U,., and by (3) we
have H(x) = H,(x) and H(y) = H,(y). Hence

o(H(x), H(y)) >

1

La> How, o)l

Thus we may assume that H,(x)e U, ., and H,(y)¢ U,... By
(3) o(H,(x), H(x)) < 0(U,,+.) < 1/4™*, whence

O(H(z), Hy)) = o(H(x), H.,(y)) = o(H.(2), H,(y)) — o(H, (), H(v))

> ('-fla—\)”o-d - (%)”W > i-dz .
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REMARK 2. Clearly the types (1/2, 1, U,) and (1/4, 2, U,) can be
replaced by other appropriate combinations.

2. In this section various notions of local homogeneity are defined.
It is remarked that the Hilbert space [, is locally homogeneous of Type
1. It is then proved that for separable and complete metric spaces
local homogeneity of a variable type implies countable dense homo-
geneity. Some problems and examples are also given.

DEFINITION 3. Let r = 1. A metric space X will be called locally
homogeneous of type » if for every X and every nbd. U of x there
exists a nbd. V of x such that Vc U and such that for each two
points y, and y, of V there exists a homeomorphism h of X onto itself
of type (¢, r, U) satisfying A(y,) = v..

Let us note that if X is locally homogeneous of type r then X
is strongly locally homogeneous according to [1]. Furthermore, if X
is locally homogeneous of type » then clearly X is locally homogeneous
of type s for s > r (we assume 0(X) < 1). The following example
shows the converse does not hold.

ExaMPLE 1. Let X be the subset of E*? defined as follows: For
any real number r = 1 denote by L, the segment in E* whose end-
points are (1/n, 0) and (1/n, (1/n)""), and by M, the segment in E*
whose endpoints are (1/n, (1/%)"") and (1/(n + 1), 0), where n =1,2 - ..
Define

X = QL(LnuMn)U{(x, 0jz=<0 or z=1}.

Let d be the metric on X induced by d(z, ¥) = min {d(=, ), 1} where
d is the usual Euclidean metric in E?. Then (X, d) is not locally
homogenecous of type r but s locally homogeneous of type s for every
s>

DEFINITION 4. A space X will be called locally homogeneous of
variable type if for every xe X and every nbd U of x there exists a
nbd. V of z such that Vc U and such that for each two points ¥,
and y, of V there exists a homeomorphism h of X onto itself of type
¢, r(z, U), U) satisfying h(y,)) = %.. (r depends on x and U.) A space
which is locally homogeneous of strictly variable type is a space which
is locally homogeneous of variable type but not of any fixed type 7.

Clearly a space which is locally homogeneous of type 7 is locally
homogeneous of variable type. For an example of a space which is
locally homogeneous of strictly variable type we give
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EXAMPLE 2. By modifying Example 1 we obtain an example of
a locally homogeneous space of strictly variable type. Define

X = U (Lnw U Mo) U (@, 0)]2 = 0)
where L, , is the segment in E* whose endpoints are (1/n + m — 1, 0)
and (1/n + m — 1, A/n + m — 1)™) and M,,, is the segment in E*
whose endpoints are (1/n + m —1, A/n + m—1)™) and (1/(n + 1) +
m — 1, 0).

If X is topologized by d of Example 1 then (X, d) is locally

homogeneous of strictly variable type.

DEFINITION 5. A separable metric space X will be called (see [1])
countable dense homogeneous if for every two countable and dense
subsets A and B of X there exists a homeomorphism of (X, A) onto
(X, B). The proof of the following theorem is not difficult and will
be omitted.

THEOREM 3. The Euclidean n-space E", the Hilbert space l, and
the Cantor set C are locally homogeneous of Type 1.

‘We now prove

THEOREM 4. A complete separable metric space X which is locally
homogeneous of variable type is countable dense homogeneous.

Proof. Let A = {a;}z, and B = {b]}, be two countable dense
subsets of X. We shall construct by induction a sequence {&,}_, of
homeomorphisms of X onto itself such that H = lim,_.., H, is a homeo-
morphism of X onto itself satisfying H(A) = B.

(a) Let U= U, = B(a,,1) and V = V,C U, be the subset of U
given by Definition 4. Let b; be an arbitrary point of ¥V, N B. By
hypothesis there exists a homeomorphism %, of X onto itself of type
(&, 7, U,) such that A(a,) = b;. Put af = a, and b} = b,.

Since A U B is countable we can assume that (4 U B) N Bd (U)) =
.

(b) Define b = b, where j is the first integer such that b,¢e
B\{b}}. Let ¢, = min {0(b}, af), p(b;b}), p(by, B U,), &(1/2%)}.

Put U = U, = B(b}, ¢,/2) and let V = V,c U, be the subset of U,
given by Definition 4. Let &(a}) be an arbitrary point of h,(4) NV,
(evidently areA\{a;}).

By hypothesis there exists a homeomorphism #, of type (&, 7, U)
of X onto itself such that h,ch,(af) = b¥. Again we can assume that
(h(4) U ByN Bd(U,) = @.
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(¢) Define af = a;, where ¢ is the first integer such that a;e
A\a¥, af} and let

¢ = min {P(hz o hi(a3), hyo hi(al)), p(hso hi(ai), Bd (1),
* % 1\"im2
0(hs o hy(ai), bY), 5152<—2—3) .

Put U, = B(hyo hy(a}), €,/2) and let V,c U, be the subset of U, given
by Definition 4. We can assume that (h,(h(4)) U B)NBd(Uy) = &.
Let b be an arbitrary point of BNV, (evidently bFe B\{b}, b}}).
Again by hypothesis there exists a homeomorphism k; of X onto itself
of type (&, 7, U,) such that ko h,oh(af) = bf.

(d) It should be clear how steps (b) and (c) can be repeated to
obtain a sequence {h,}}-, of homeomorphisms of X onto itself satisfying
the assumptions of Theorem 1. By Theorem 1 H = lim, . H, is a
homeomorphism of X onto itself and clearly H(A) = B. Theorem 3 and
Theorem 4 imply the following

COROLLARY 1. The Hilbert space l, is countable dense homo-
geneous. This result does not follow from [1].

The above concepts now lead to the following problems:

Problem 1. Let > s =1 be fixed real numbers. Does there
exist a metric space (X, 0) which is locally homogeneous of type r, and
if p, is any metric on X equivalent to o then the space (X, p,) is not
locally homogeneous of type S?

Problem 2. Does there exist a metric space (X, 0) which is locally
homogeneous of strictly variable type for each metric o, equivalent
to o?

Problem 3. Determine conditions which imply that a strongly
locally homogeneous space is locally homogeneous of variable type.

The author wishes to thank the referee for his advice especially
for supplying Definition 4, Example 2, and problem 2.
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