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A characterization is given of those functions on 0B" =
{1z] =1} which can be extended to be analytic, pluriharmeonic,
or n~-harmonic in B" = {|z]| < 1}.

1. Introduction. If f is a continuous function on 0B" = {z =
(2, +++, 2,):|2] = 1}, then f can be extended to a harmonic function
F in B"= {z:|2| <1}. That is, the Dirichlet problem is uniquely
solvable. If we wish F, in addition, to be analytic, pluriharmonic,
or »-harmonic, the extension is not always possible, and we must
impose some restrictions on the function f. It is well-known that
necegsary and sufficient conditions for f to have an analytic extension
are that f satisfy the tangential Cauchy-Riemann equation. In this
paper we show that there are other systems that replace the tangential
Cauchy-Riemann equations as consistency conditions. We also give the
consistency conditions for a function to extend to be pluriharmonic or
n-harmonie.

2. Pluribarmonic extension. Some important differential opera-
tors tangential to dB", n = 2 are:

_ = 0 = 0
1 L = s — G
(1) K% 5T 4 5%,
— 0 0
2 :_%j = Si= — S =
(2) =G d £ e
where we take 1 <4 j<n and {=({, ---,{,)edB". A simple

computation shows that the real and imaginary parts of these operators
are tangent to 0B". These operators extend naturally into the interior
of B". The following lemma shows the interplay between the action
of the &4; on dB™ and in B~

LEMMA 1. Let &¥ be one of the operators (1) or (2), and let
ue C(0B™) be given. If P(xz, {) is the Poisson kernel on B, we have:

(3) (Fru) = P(z) = Z(ux P(z))
for LedB", zc B™.

Proof. The operator &~ satisfies the hypotheses of Lemma 2,
and thus the right hand side of (3) is harmonic (the left hand side
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20 ERIC BEDFORD
obviously is). Sinece (8) is valid for |z| = 1, it must hold for all z¢ B".

LEMMA 2. An operator & = f(x, y)d/oy — g(x, y)0/0x preserves

harmonic functions if and only if the pair (f, g) satisfies the Cauchy-
Riemann equations,

fx:gy
fil: -0 -

Proof. Itisa straightforward calculation that (z7u),, +(=u),, =0
for all harmonic « if and only if f, = ¢, and —f, = g..

COROLLARY 1. If fe L'(0B™), and Zf =g in the weak sense,
e | foe= —S] 99 for all @e C~(3B"), then
Il=1

9= P(2) = Z(f * P(2)) .

Proof. Since the Poisson kernel on B*is P({,?2) =1—|z|*/|z— ],
one can calculate that:
LPE 2) = —APE, 2) .

Thus if dS is normalized surface area, we have:
“ufP@) = | AOLPE s

- _Slc1=1f(c)$P(C’ z)dS = szlg(c)P(C, 2)dS
= gxP(2) .

DEFINITION. If a and @ are multi-indices, then 2°2% = []7., 297}
has type (p, @) if || = pand |B| = q. If i(z, 7) is a sum of monomials
of type (p, @), then h is of type (p, 9).
= Observe that if 4 is of type (p, q), then F,h is either zero or of
type (p + 1, ¢ — 1). Similarly, &7,k is either of type (p — 1, ¢ + 1)
or zero.

By L we will denote the matrix of operators L = (&%)).

If K= (K,,) and M = (M}M;;) are two matrices of operators, then
KM will denote the tensor product of the two matrices:

KMw) = K @ M) = (K, M) .

LEMMA 3. Let Fe CY(B") satisfy 4F = 0. If LF(z) =0 for all
ze B*, then F is analytic.

Proof. The system LF = 0 is precisely the tangential Cauchy-
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Riemann equations (see [1], [2]). Thus if f is the restriction of F to
0B", then f has a holomorphic extension to B”, which must coincide
with F, since F' is harmonic.

REMARK. The lemma may also be proved directly without
mention of the tangential Cauchy-Riemann equations.

THEOREM 1. If we C*0B™), then
(4) LLL(w) =0
iof and only if u extends to a pluriharmonic function U on B™.

Proof. If u extends to a pluriharmonic U, then we write
Uz, z2) = f(?) + 9(Z) where f and g¢g are analytic. An entry of the
matrix LLLU looks like:

(=, U) = Egj(gkle - Zf2)

(9% _ 5El> )
za<a§'; >le + 24 (5%; S
= L (analytic) = 0 .

To prove the converse, we show that the harmonic extension U
of u is pluriharmonic. Since U is harmonic, we may write, as before:

Uz, z) = p%oF“ .
By Lemma 1, we have:

LLUS F,) = 3 LLLF,,=0.

Recall that LLL takes a polynomial of type (p, ¢) into one of type
(p +1,q—1) or zero. Thus LLLF,, =0 for each p, ¢ = 0.

By Lemma 3, the entries of the matrix LLF, , are analytic. But
on the other hand, they must be of type (p, @) or zero. Thus if ¢ = 1,
we conclude that LLF,,, = 0.

Again by Lemma 3, the entries of LF',, are analytic if ¢ = 1.
But since they will be type (» — 1, ¢ + 1) or zero, we conclude that
LF,,=0 for ¢ = 1. This means that F,, = 0 is analytic if ¢ > 1.
Thus if p, ¢ = 1, then F,, = 0.

Thus we may write

U(Z, Z) = Z(FJO + Fo;) + Fo, .
izl

Hence U is pluriharmonic.
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REMARK. It was observed by L. Nirenberg that there is no second
order operator & which gives the consistency conditions for pluri-
harmonic functions 0B".

COROLLARY 2. Let m =2 and ue C*(0B") be given. Then u can -
be extended to U pluriharmonic tn B™ if and only if (5) or (6) holds:
(5) LAL*L)"Lu = 0
(6) (L*LAHY"Lu = 0 .

Proof. If u can be extended, then the above equations are clearly

valid.

We prove the other implication by induction. Line (5) holds for
m = 0 (Theorem 1). We assume that (6) is valid for m = k£ and show
that (5) also holds for m = k. The other part, showing that (5) is
valid for m = k implies (6) valid for m = &k + 1 is identical. If U is
the harmonic extension of %, L.emma 1 applied to (5) yields:

LI L(LLU) =0 .
Conjugating, we get:
(LY L(LLU) =0 .

Thus the entries of LLU are pluriharmonic. Thus if we write
U=3>F,, we have LLF,,=0 for p,q =1, since LL preserves
type. Thus LF, , is analytic for p, ¢ = 1. Hence F,,=0 for p, ¢ = 1.
Hence F,,= 0 for p, ¢ = 1.

3. Cauchy-Riemann equations.
LEMMA 4. If fe C¥B™), then Z;f =0 if and only if
FZLuf = 0.

Proof. If Lf =0, then clearly <%, %,;f =0. To prove the con-
verse, we fix all variables except z; and z; and restrict f to

C.={z]+2=1%.
Let dS. be the normalized surface area, and integrate by parts:
|, Zuf(Fhis. = =\ r(&Zaf) =0

Thus Z;f = 0 on C,. Since this must hold for all r, &;f = 0.
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REMARK. If Q = {0 = 0} is a smooth domain, grad o # 0 on 02,
then we set ,5/71 = 0.,(0/0%;) — 0.(3/6%;). The proof above shows that
for fe C¥0Q), “;f = 0 on 42 if and only if &9, 2%,f = 0 on 99.

THEOREM 2. Let m =1 and we C™(0B") be given. Then u can
be extended to an analytic function on B™ if and only if:

(7) Gl FuZ) ") = 0 (m odd)
(8) P(Fu L) u() = 0 (m even)

for all LeoB” and 1 =%, 5 = n.

Proof. InLemma 4 we have shown that Range (.%7;) N Null(.&,;)=0.
Similarly, Range (&%,) N Null(<5;) = 0. Thus equations (7) and (8)
will hold if and only if &5u = 0. Since Lu is the tangential Cauchy-
Riemann system, (7) and (8) will hold if and only if % can be extended
to an analytic function.

REMARK. The above theorem remains valid for fe C=(0Q2), as in
the remark following Lemma 4.

4. N-Harmonic functions.

DEFINITION. Let I” be the set of subsets of {1,2, -.., n}. For
ve I', we say that w is v-regular if 0u/0Z, = 0 when k € v and ou/oz, = 0
when k¢v. We define a new operator T = (&,.%,). For veI', we
define T7(resp. L7) to be T(resp. L) with the variables z, and %,
interchanged whenever k¢ 7.

The function z,, for instance, is v-regular for many 7, but 2z, is
not v-regular for any . Note that every v-regular function is
n-harmonic.

LEMMA 5. If f is harmonic on B*, then T7f =0 if and only if
fis v-regular.

Proof. We have established in Lemma 4 that Tg = 0 if and only
if g is analytic. Consider the real linear map v: C*— C"

,Y(xl, Yy * 0y Loy yn) = (Cl, ) Cn)
where

Ck:xk—i?jk ifkey.
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Any v-regular function f can be obtained from some analytic g
by composition:

f=gev.
Hence T'f = Tg = 0 if and only if f is v-regular.

THEOREM 3. A function wec C=(0B") can be extended to a function
U which is n-harmonic tn B™ if and only if:

(9) (IL Tw =0 .

rerl

(Since the T"’s do not commuste, the product (9) is taken in an arbitrary
but fized order.)

Proof. We shall show that the harmonic extension U of % is
n-harmonic if and only if (9) holds. The function U is n-harmonic if
and only if we may write:

U= > w where w is v-regular .
rel

The “if” is clear since each %’ is m-harmonic. The “only if” follows
because we may use the Cauchy integral formula in 2z, to write:

u(zy 2.) = f(zly w) + g(gly w) w = (zZ, 22, M " zny E'll,)

where f and g are m-harmonie. If we continue and split each part in
a similar fashion we obtain the desired representation.
Now we show that if f is v-regular, then so is Tf. We compute:

FiZuf = 2Z:if ez — zigjfa.-ij
- zjzifzji.' =+ zjgjfz;i‘- - Ejf?j - Eif;j .

In expression (10), f will be multiplied by the variable & only if f. == 0.
Thus if f is v-regular so is Tf.
If we perform the analogous computation for 77, we can use the
same argument to show that if f is v-regular then so is T7f.
Now if U is w-harmonic, then U = >, u°; and
OTw =T1T'T 11 Tru’
rerl Iy Iy

=0.

(10)

This is because [] T"w° is o-regular and will be annihilated by T°.
To prove the converse we establish the following result:

LeMMA 6. Let v, v, ---, v, be harmonic. If v; is v;-regular and

(11) Tv=v+ -+ + v,
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then we may write v = U + %, + +-+- + U, where u; is v;~regular, and
u 18 Y-regular.

Proof of lemma. Let u, = u, + --- + u, be the sum of all mono-
mials of v that are v;,-regular for some j=1,2, ---, k. Thus %, is
harmonic and so is » — u,. We now claim that T7(v — w,) is zero.

By the construction of u, every monomial 2°2% of v — u, is not
v;-regular for any 5 = 1,2, ---, k. From an inspection of (10), one can
see that if T"(v — u,) is nonzero, then it will be a sum of monomials,
none of which is v;-regular for any j =1,2, ---, k.

On the other hand, from (11) and the construction of u,, it is clear
that T7(v) — T'u, is a sum of v,-regular functions. Hence T7(v — u,)
must vanish. By Lemma 5, we conclude that v — %, = » is v-regular,
concluding the proof of this lemma.

Proof of theorem. We iterate Lemma 6 several times and find
that if (8) is valid, then
U=>,u", as desired.

verlr

COROLLARY 3. A function uw € C~(6B") can be extended to a function
U= >}, u;, where u; is v;~regular if and only if

<fI Tfa')u =0.
Proof. This follows easily from Lemma 6.

REMARK. All of the above results remain valid if the boundary
differential operators are interpreted in the weak sense of Corollary 1.

I wish to thank Professor B. A. Taylor for his generous help and
encouragement.
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