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Let G be a locally compact, noncompact, unimodular
group. For xeG, we denote by Lx, the left translation op-
erator defined on L2(G) by LJ{y) = /(or1?/). We let Sf2{G) be
the closure, in the weak operator topology, of the algebra
generated by the operators {Lx\ xβG}. For fe LP(G), 1 ^ p ^
2, we let Lf be the closed operator in L2(G), defined by Lfg =
f*g, for geL1(G) Π L2(G). We prove, under a natural hy-
pothesis on G, that for every 1 < p < 2, there exists a projec-
tion Pe£?i(G), PφO, with the property that if feLp(G), and
PL/ = Lfi then / = 0. Thus P is a projection of uniqueness
in the sense that the only element / e Lp, such that the range
of Lf is contained in the range of P is the zero element.
Another way to express this result is the following: There
exists a nontrivial closed subspace of L2(G), invariant under
right translations and which contains no nonzero element of
LP(G).

The additional hypothesis required on G is the following, which

will be tacitly assumed in the sequel:

(H) =Ŝ (G) is not purely atomic, that is, it is not generated, as
a von Neumann algebra, by its minimal projections.

Hypothesis (H) is certainly satisfied if G is discrete. However,
there exist noncompact groups for which (H) is not true. A discus-
sion of hypothesis (H) will be given at the end of this paper.

The progenitor of the present work is a note by Y. Katznelson
[11] in which it is proved that there exist nonnegligible subsets of
the torus T which are sets of uniqueness for lv when p < 2. Our
result coincides with Katznelson's theorem if G is taken to be the
group of integers Z, with the discrete topology.

A. Figa-Talamanca and G. I. Gaudry have extended Katznelson's
result to the case in which G is a locally compact noncompact Abelian
group [6]. In fact for the theorem proved in the present paper, we
use the techniques of [6] in the framework of I. E. Segal's noncom-
mutative integration theory [18] as applied by R. Kunze [13] and
W. Stinespring [19] to the canonical gage space of a locally compact
unimodular group.

It is evident that hypothesis (H) plays the role of the hypothesis
of nondiscreteness of the character group of G made in [6]. Whereas
it is clear that discrete (Abelian) groups cannot have sets of unique-
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ness we cannot determine as yet if the hypothesis (H) in the general
case is essential for the existence of projections of uniqueness. We
note that compact (nonAbelian) groups do not have projections of
uniqueness.

We mention also that I. Hirschman and Y. Katznelson [10] have
improved Katznelson's result for lp, be showing that if p < q ^ 2,
there exist sets which are of uniqueness for P, but not for P. This
latter result was extended by A. M. Mantero [16] to the case of an
arbitrary noncompact LCA group. Neither the techniques of [16] nor
our techniques appear to be useful in order to extend Mantero's
results to a noncommutative situation.

Section 2, which follows, contains the main result of this paper.
In §3 we give some applications of the main result. In particular
we introduce the spaces <2fv{G) which consist of the bounded linear
operators on LP(G) (1 <£ p <£ 2) which are strong limits of linear com-
binations of left translations, and we prove that if p Φ q, the norms
of J^fp and Jίfq are different. We also discuss the noncommutative
analogue of the "derived space" in the sense of [5] and [15, §4.7].
We conclude the paper with § 4 which contains some remarks on
hypothesis (H) and another related hypothesis. The authors are grate-
ful to Bernard Russo for several interesting conversations. In parti-
cular to Russo are due the contents of §4.

Before entering in the heart of the matter we recall some facts,
taken especially from [18] and [13], which will be used in the following
section.

DEFINITION 1.1. A regular gage space is a system (φ, 21, m) com-
posed of a Hubert space φ, a ring 21 of everywhere defined bounded
operators on φ and a nonnegative-valued function m on the projec-
tions in 31 with the properties

(1) m(P) > 0 if P Φ 0 and m(0) - 0.
( 2 ) m is completely additive.
(3) every projection is the l.u.b. of projections on which m is

finite.
(4) if U is unitary and C/e2ΐ, then m(U*PU) = m(P).

We will assume from now on that the ring 21 is a von Neumann
algebra.

DEFINITION 1.2. A closed, not necessarily bounded operator T,
on a Hubert space ξ> is said to be measurable with respect to a von
Neumann algebra 21 of operators on ξ> if

(1) T commutes with every unitary operator in the commutation
2V of 2X.

(2) There exists an increasing sequence Kl9 iζ>, of closed
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linear subspaces in the domain of T, such that the restriction T{i) of
T to Ki is bounded, for each i, Ki is algebraically finite, Ki \ 0 and
the projections P^ on iΓ; belong to §1 (see [18, p. 404] for a definition
of algebraically finite).

Recall that given a gage space (ξ>, 21, m) = Γ, it is possible to
extend the function m to be a linear functional on a class Lι{Γ) of
measurable operators (with respect to 21). We have that Lι{Γ) is a
linear space on which m is a linear functional which is positive on
positive elements. The space Lι(Γ) becomes a Banach space with the
norm |j T\\Lι{Γ) = m(\ Γ|) where U\ T\ = Γ is the canonical polar de-
composition of T (it turns out that if T is measurable, then Ue §1
and I Γ| is measurable).

It is known [18] that if G is a unimodular group we can define
the canonical gage space Γ = (L2(G), Jzf2{G), m), where, as before, £f2

is the von Neumann algebra generated by left translation by elements
of G and m is defined as m(P) = ||/||jj when P is a projection and
P = Lf and as m(P) = co, otherwise.

In this context the operators Lf with fe Lp, 1 <£ p <̂  2 are meas-
urable with respect to the ring ^f2 [13, p. 533]. We also have that
&{Γ) is isometrically isomorphic with the Fourier algebra A(G) defined
by P. Eymard [4]. This is a consequence of Eymard's result assert-
ing that A(G) = L2(G)*L2(G), and the fact that if TsL\F), then
Γ = LfLg for some /, geL\G) and || T\\LHΠ - ||/||a||flr||2.

The isomorphism between L\Γ) and A(G) is given by Γ—> TΛ(α;) =
m(LxT) for α eG, and TeLι{Γ). This is a consequence of results of
W. Stinespring on the inverse Fourier transform [19, §9]. Finally
we remark that if L\Γ) = {Lf:feL2(G)} the correspondence f—*Lf

defines a unitary transformation of L\G) onto the Hubert space L2(Γ),
endowed with the inner product (ϊ7, S) = m(TS*), for S, TeL2(Γ).

2. The main result* We will start with a lemma which is a
noncommutative version of Lemma 1.2 of [6].

LEMMA 2.1. Let £f2(G) = 21033, where S3 is the von Neumann
algebra generated by the minimal projections. Let P be a nonzero
projection Pe2L with m(P) < co. (Such a projection exists by virtue
of hypothesis (H)). Let ε > 0 be given and 1 < p < 2. There exists
a projection Pεd P such that

(i) m(Pε) £ (1 - ε)m(P)
(ii) /or eαcA TeL\Γ) with PεT = T, £fcβ inequality

II i |U~(c) ^ e | | i

holds.
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Proof. We notice first of all that 21 contains no atoms; therefore
for any projection Q e 21 and any positive number a < m{Q)y there exists
a projection Qae 21, Q α c Q such that m(Qa) = a. Indeed it is not
difficult to see that if {Pi}i&1 is a maximal chain of projections of 21
contained in Q, and Q = Sup {P^ m(Pi) ^ a} then m(Qα) = a. Using
this fact repeatedly with a = 1/2 m(P), and assuming, without loss
of generality, that m(P) = 1, we can define a sequence {πn} of parti-
tions of P into 2% orthogonal projections in the following fashion: The
partition π1 consists of two projections Pn and P12 with m(Pn) = m(P12);
the partition πn is obtained by dividing each projection of the parti-
tion π H - 1 into two projections of equal measure. We define then the
Rademacher operators as Rn — Σ Γ ( — l)k+ίPnk> where the partitions
πn = {Pw>1, , Pn>2n} are indexed in such a way that Pw__1)fe = Pn,2k^ +
ίV«* (Λ = 1, , 2- L ). We let then Wo = P and Wn = Λyi, , i2 i s where
w = 25'1"1 + + 2ί ~1

> j \ < j 2 < i s . The sequence { ΐ f ^ o is an
orthonormal system in L\Γ) which will be referred to as the Walsh
system; its elements will be called the Walsh operators. We note
that each Pnk belongs to linear span of {Wt} and that all Pnk commute.

Let now N be a large positive integer; we shall define N opera-
tors Φlf •••, Φn, mutually orthogonal in L\Γ) which are linear com-
binations of Walsh operators and satisfy the following conditions:

( 1 ) m(| Φj I) ^ 2, m(Φ)) ^ 2k+ι, where k is an integer such that

2rk < ε/N < 2~k+1

( 2 ) if Qj is the projection on the subspace {u: Φ3u = u], then

m(Qy) ^ (1 - ε/N)

( 3 ) \Φ:(x) + . . +ΦA

N(x)\ ^ 4 , x e G .

To construct these operators we let Φv = P and we suppose
that Φl9 -—,Φn have heen constructed satisfying (1), (2), and

(3') \ΦΪ(x)+ ••• + Φ : ( x ) \ ^ ( 2 + ψ ) , xeG.

Since Φj e L\Γ) and Φj e A(G) ϋ C0(G), there exists a compact set i ί s
G such that | Φ (α ) | ^ 1/JV for 1 ^ j" ̂  ^ and x £ K. We notice that
if § is the Hubert space generated by {TFJ, and T is the projection
of L\Γ) onto φ, || T(LXP)\\\ is a continuous function of x.

On the other hand Σ I MLXW{) \2 = | |Γ(L.P) | |L since {T7J is a
complete orthonormal system in φ. Therefore, by Dini's theorem the
convergence of the series

is uniform on if. In conclusion we can choose a positive integer v
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such that Σ;>* I m(LxWi) |2 is uniformly and arbitrarily small on K.
We can also assume that v is greater than the indices of the Walsh
operators appearing in the expansions of Φu , Φn. This assumption
implies that m(ΦόWh) = 0 if 1 ^ j ^ n and h>v. For any such choice
of v, we can choose a partition πm of P such that 2m > v. For typo-
graphical convenience we shall denote the projections of the parti-
tions as Pi5 = P(ΐ, i). Then if P(m, j), j = 1, , 2m are the projec-
tions of τrm, P(m, j) = P(m + fc, (i - 1)2& + 1) + P(m + fc, (i - 1)2* +
2) + + P(m + Λ, y2*), where j = 1, , 2m, and Λ is the fixed in-
teger satisfying 2rk < ε/ΛΓ < 2~fc+1. Define now

Φn+ι = P - 2k Σ P(w + K (J - 1)2' + 1) ,

then

ΦΛ+1P(m, i) = P(m, i) - 2*P(m + k, (j - 1)2* + 1) ,

and

Since m(Φn+1P(rn, j)) = 0 and for i ^ v, WiP(nι, j) = ±P(m, j), it fol-
lows that

m(Φ%+1Wg = Σ ; ± m(Φn+ιP(m, j)) = 0 .
1

In particular Φn+ι is orthogonal to all Φjf when 1 ^ j ^ n, and

(4) « U = Σ α / Ϊ F i ,

where the αy are real numbers and the sum is finite. To check that
condition (2) holds we notice that

+ kf (j - 1)2*

and therefore,

by definition of k. If x$K, \ Φ^(x) \ < 1/N (1 £ j ^ n); therefore,

\ΦΪ(x)+ ••• -r Φ:+ix)\ ^ ^ Λ- \Φ:+1{x)\ ^2 + ^ .

On the other hand, if xe K, we have that
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+1(«0 I ̂  Σ I aMLxW3) I ̂ ( Σ I % I2)1'' ( Σ I iLW) I2)"'

Now, as we saw, by choosing v large enough, we can make the
right-hand side of this equation arbitrarily small on K. We suppose
then that v has been chosen in such a way that

I Φ:+1(X) I ̂  JL.

This proves t h a t there exist operators Φlf •••, ΦN, satisfying (1), (2),

and (3).

To complete the proof of the lemma, we write

F = (Φ, + • • + ΦN)/N .

By construction the operators Φ3 are orthogonal, and it follows that

1 / Ofc + 1 \ l / 2

(2 II φ \)' )

Since ε/N < 2~k+1, 2~kN > ε/2, therefore

\\F\\LHΓ)^C ,

where the constant C is independent of N. On the other hand,

where the constant p is independent of N, by (3). Finally if 2 <
q < co and lip + 1/q = 1, the relation

i l ^ 7 Hz, (ί?) = LHG) L{G)

holds. If N is large enough, this inequality implies that

Write now Yε = {ueL\G):Fu = u} and let Pε be the projection of
L2(G) onto Ye. Since

Γε 3 Π {u: ΦjU = u) ,

and Qy are the projections onto {̂ : Φ̂  u = u}, satisfying m(Qά) ^
(1 - ε/N), we have that m(Pε) ^ 1 - ε. Let now Te L\Γ) and sup-
pose that Γ e L*(G) and that PεT = T. Then FT = FPεT = PεT =
Γ, since FP ε = Pe. Furthermore TeLq(Γ), by [13, Theorem 6 and
Corollary 7.4] (see [13] for a definition of Lq{Γ)). Therefore Te L2(Γ).
We have then,
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= \m(LxT)\ = \m(LxFT)\

- I \G(LxFy(y)Γ(y)dy\ £ \\ (LXF)A \\L*{G)\\ Γ \\L<(σ) £ e\\ Γ \\\L*{G)\

The application of the Parseval formula [13, Lemma 7.2] is licit
because both T and LXF bolong to L2(Γ). We have thus proved that

We are now ready to prove the main theorem.

THEOREM 2.2. With the notation of Lemma 2.1, let 1 < p < 2
and let Pe SI, m{P) > 0. Then there exists Qe%, Qa P such that if
Te L\Γ), QT = T and ΓΛ e ZΛ it follows that T = 0. Furthermore,
Q can be chosen in such a way that m(Q) is arbitrarily close to m(P).

Proof. Again we can assume without loss of generality that
m(P) = 1. We let Σ ε % <£ η < 1 and we define Ptn as in Lemma 2.1.
Let Q = Π^i Pen- Then m(P - Q) ̂  η and therefore m(Q) ̂  1 - η.
On the other hand, if Te Lι{Γ) and QT = T, then Pε%T - Γ and there-
fore i| ΓΛ I loo ̂  en|| T

Λ ||L2>(G) for every n. This inequality can hold only
if || TΛ \\Lp{G) = oo or if Γ = 0. The theorem is thus proved.

3. Applications. We denote by ^fp9 1 <Ξ ̂  ^ 2 the algebra of
operators on LP(G) which are limits in the weak operator topology
of linear combinations of left translations. We remark that ^ is
isomorphic to M(G), the algebra of regular bounded measures on G;
the isomorphism is defined by the map μ—>Lμ, for μeM(G), where
Lμf = μ*f. This implies that ^ C ̂  for every p. The spaces ^ ,
are endowed with a locally convex Hausdorff topology, with respect
to which the unit sphere is compact. Indeed for p = 1 this topology
is the weak* topology, for p > 1 it is the weak operator topology, for
which the unit sphere is compact by virtue of the reflexivity of LV(G).

In this section we establish first of all a result which states that
the norms of ^ and £fq are inequivalent on £fx (which is contained
in both), when p Φ q. The result, as before is proved only for groups
satisfying (H).

THEOREM 3.1. Let 1 ̂  p < q ^ 2, then the norms || |U2 + || | |^
and || | |^2 + i| |U-P defined on the space Jίf[ are not equivalent.

Proof. If the norms were equivalent, then for some K > 0

(5) || iUp + ll IU^( IHU ? + IHk).

But the density theorem of Kaplanski [2, p. 46] and the definition
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of ^ , imply that there exists a generalized sequence {Ta} of elements
of j ^ , (indeed Ta = Lfa, with faeLι(G))> such that limβ Ta = Q, in the
weak operator topology, where Q is the projection whose existence
is established in Theorem 2.2, and | | T α | U 2 ^ l . Since Q$£fp, no
subnet of {Ta} can converge in the weak operator topology of i^,.
It follows that Ta cannot be bounded in the norm of JZ%. Therefore,
we can construct a sequence {Tn} £ {Ta} such that || Tn \\&p —* oo.

Applying (5) one gets

On the other hand, the Riesz convexity theorem implies that

\\TΛ\Ug<*\\Tn\\**p\\Tn\\¥t,

for some 0 < t < 1.
Hence,

which implies

wp

_ ι I I T I I I I T 7 I I — * < ^ K V I I T 1 1 1 — ί _ J _ I I T 1 I I II Φ I I — * ^

+ II ̂ ^ IU2II ί% lU p ^ Adi ^ 11̂ 2 + II ̂ ^ II^JI ^n \\irp) f
which is absurd because || Tn \\^p -+ oo, and || Tn\\<?2 ^ 1.

When G is amenable we have the norm-decreasing inclusion jSfp S £fq

for 1 ^ p ^ q ^ 2. This result is due to C. Herz for the general case
[9, Theorem C]. For the case of a commutative group the inclusion is
simply a consequence of the Riesz convexity theorem. For the com-
pact case a continuous, but not norm-decreasing inclusion, had been
established in [7, pp. 511-512].

Applying Theorem 3.1 to the case of an amenable group satisfy-
ing (H), we obtain:

COROLLARY 3.2. Let G be an amenable group satisfying (H), then
the inclusion Jίfp ϋ ^S^, for 1 ^ p < q ^ 2 is proper.

This corollary was established in [6] for noncompact commutative
groups.

Our second application concerns the "derived space" of LP(G).
The following definition is based on that which was given in [5] for
the commutative case (see also [15]).

DEFINITION 3.2. For feLp, 1 ^ p ^ 2, define

H/llo = s u p {|| Lhf\\p: \\Lh\\ 2 rg 1, h e U{G)} .

We call the derived space of Lp and we denote by (I/)o, the linear
subspace of Lp consisting of the elements for which | | / | | 0 < °o.
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We notice that, as it was proved in [6], (Lp)0 = 0, when G is a
noncompact Abelian group. We cannot prove or disprove the same
result even in the case when G satisfies property (H). However, the
result is true with essentially the same proof, when a stronger con-
dition holds, that is when Jzf2(G) has no minimal projections.

THEOREM 3.3. If G is a noncompact group and Sf2{G) has no
minimal projections, then (Lp)0 = 0.

Proof. Let fe (Lp)0 and fφO. There exists a projection Pe
such that PLf Φ 0 and m(P) < oo. Since P can be approximated in
the weak* topology of =S (̂G), by elements of the type Lh, heL\G)
and ||L/J| ;,2 ^ 1, and since LP(G) has a weakly compact unit sphere,
it is not difficult to see that, by definition of (Lp)0, PLf = Lg, with
g e (Lp)0. It follows that PLg = Lg. This means that if ε is sufficiently
small and Q c P is the projection constructed in Theorem 2.2, and
such that m(Q) > (1 — e)m(P), then QLg Φ 0. By the same reasoning
QLg = Lh — QLh, with he (Lp\, and h Φ 0. But this is impossible on
the basis of Theorem 2.2.

REMARK. For p = 1 the analogue of Theorem 3.3 has been es-
tablished by S. Helgason for several special cases [8] and by Sakai
for every noncompact group [17].

4* The hypothesis (H). There exist noncompact groups which
fail to satisfy (H). This is shown in [1, §4]. This is the only ex-
ample known at present to the authors of a noncompact group for
which ^f2(G) is purely atomic. Many groups have some minimal
projections and still satisfy (H), e.g., SL (2, R) [14]. At the other
extreme the following classes of groups have no minimal projections
and thus Theorem 3.3 applies to them:

(a) noncompact complex connected semi-simple Lie groups,
(b) noncompact real simply connected nilpotent Lie groups,
(c) noncompact (unimodular) SIN groups (i.e., there is a basis of

neighborhoods of the identity invariant under all inner automorphisms).
(d) the Euclidean group.
For references to the proofs of (a) and (b) see [3, 14.6.3]. Basi-

cally these facts follow from the correspondence between minimal
projections in J*f2(G) (equivalently in Jέ?2(GY)> and irreducible subrep-
resentations of the regular representation of G (square integrable
representations) [3, §14].

The proposition which follows is known [20, p. 70], but the proof
is new and provides a proof of (c). The proof of (d) follows from the
Plancherel formula for the Euclidean group [12], which shows that
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the Plancherel measure has no atoms and hence [3, 18.8.5], the group
has no square integrable representations.

PROPOSITION 4.1. // the left regular representation of a locally
compact unimodular group G contains a finite-dimensional subre-
presentatίon π, then G is compact.

Proof. Let E be the minimal projection in £fΊ{ — the commutator
of &§ corresponding to π and let F be the central support of π in
-SI Π &%. Then £?% ~ S?F φ Sf^Fy where SιfF is isomorphic to the
ring of all bounded operators on a finite-dimensional Hubert space.
From Stinespring [17, § 10] we know that x —> Lx is a homeomorphism
of G onto {Lx:xeG} with the weak operator topology and that
{Lx: x e G} [J {0} is weakly closed in the unit sphere of £f2. In our
case {Lx:xeG} is closed in {Lx:xeG} U {0}, since if LXa—* T, weakly,
we have FLXa —» FT, in norm, because ^fF is finite-dimensional, so
T Φ 0. Thus {Lx: xeG} is compact and so is G.

COROLLARY 4.2. A noncompact unimodular SIN group G has no
minimal projections in Jzf2(G).

Proof. As in the above proof we have £f% = £fF φ i^_^, where
-Sj. is isomorphic to the ring of all bounded operators on some Hubert
space, not a priori finite-dimensional. But as G is SIN, £& and hence
HfF must be a finite von Neumann algebra, [3, 13.10.5] and [2, p. 97].
Thus the subrepresentation determined by F is finite-dimensional.
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