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The paper is devoted partly to the study of non-absolute
Norlund summability of Fourier series of ¢(f) under the con-
dition ¢(t)x(t) e AC[O, z] for suitable X({). The other aspect is
to determine the order of variation of the Harmonic mean of
the Fourier series whenever ¢(¢) log k/te BV [0, z].

1. Let L denote the class of all real functions f with period 27
and integrable in the sense of Lebesgue over (—x, 7) and let the
Fourier series of fe L be given by

i (a, cos nt + b, sin nt) = i A,t),

assuming, as we may, the constant term to be zero.

We write
6(t) = (@ + 1) + flo — 1)
£y = t cos nu d
o, 0= |, 1wy
W(n, t :S"cosnud
(n,t) T u
Let {p,} be a sequence of constants such that P, = 3", », % 0

(n=0)and P_, = p_, = 0. For the definition of absolute Norlund or
(N, p) method, see, for example, Pati [9]. When 37, a, is absolutely
(N, p) summable, we shall write, for brevity, > 2..a,.€| N, p|.

We define the sequence of constants {¢,} formally by (7, p,2™) ™" =
M ™ ey = 0.

2. One of the objects of this paper is to study the non-absolute
(N, p) summability factors of Fourier series and generalize the follow-
ing outstanding result of Pati in Theorems 1-2. Besides, the proof
of Theorems 1-2 are short and simple and avoids the direct technique
of Pati which is somewhat long and complicated.

If we write

G = {f: fe L o) log kjte AC[0, 7] and S A,(x) ¢ 'N, 1 }1
a=1 n+ 1)

then Pati’s theorem is in the following form:
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THEOREM P [9]. G is nonempty.

Mohanty and Ray [8] subsequently constructed an example of
fe@G.
We now establish

THEOREM 1. Let X be a real differentiable function and {e,} be
a sequence satisfying the following conditions:

(1) #(t)X(t) € AC[O, 7] ,
S -

(2) 3o, m | < =
| Z8) |

(3) —3[—2—(—5—/‘ as t\,0,

(4) $ Ll [X@m| _ .,

=t P, Xa/n)

- . _
(5) ;:]1 A<nPW> < oo,
(7) 3 a set E:mE >0 and 3 a constant 1 > 0 such that X({&)™ > 7
Vie E .
Then
(8) by I‘;;‘l A0 = = (Ve E),
if and only if
3 |8‘”‘| = oo
) = n| P, | ’

Now, if we denote, G* = {f: fe L, conditions (1) through (7) and
(9) hold and >\7..¢,4.(x) ¢ | N, p|} then we establish

THEOREM 2. Let
(10) Spl=0(PD), 3lel< e,
Then G* is nonempty.

In §38, we discuss some special cases of interest of Theorem 2.
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Since Theorem 2 implies that the total variation of the (X, p) mean
of the series >, ¢,4,(x) is unbounded, the natural question now is to
determine the order of the variation. And this is achieved in Theorem
3 in §4.

3. We need the following lemmas for the proof of Theorem 1.

LEMMA 1. (2) Suppose that {f.(x)} is measurable in (a, b) where
b—a < o, forn=12 ---. Then a necessary and sufficient condi-
tion that, for every fumction r(x) integrable in the semse of Lebesgue
over (a, b), the functions f,(x)y(x) should be integrable L over (a, b) and

IIOTRCTIES
18 that
3@ =K,
where K ts an absolute constant for almost every x in (a, b).

LEMMA 2. Let condition (3) hold. Then

L) 12m)
n*/  X¥(w/n)

) = 25+ of

Proof. We have, by integration by parts, and second mean value
theorem,

o= ([, - ) ez

= i;(";)t <S - St > ;Eu; sin nudu
- Sat o)L [ o
-t o 1)1

where t/n = (=7, n/n S St
This completes the proof.

Proof of Theorem 1. We have, by integration by parts,
Aw) = _S 6(2) cos ntdt = F(0)g(n, ) + S”F'(t)h(n, tydt ,
0

where F(t) = #(t)X(t). Hence by condition (2) the statement (8) is
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equivalent to proving that:

(1) pIRL o] H () I, t)dt1- o (Ve E).

| P,
Since, by hypothesis (1)
1P < =,

by Lemma 1, the statement (11) is equivalent to proving that I a
set E:mE > 0 and

(12) 2 ['P'! \h(n, )| = == (Vte E).

Whenever conditions (3) and (4) hold, by virtue of Lemma 2, the
statement (12) is easily seen to be equivalent to proving that

T I
T = b = (Vte B) .

(13) M@) =
Now, since
|sin nt| = sin®* nt = —%(1 — cos 2nt) ,

we have

1 <HECs SIS
M(t) = oY) <n§1 2 P Z:' WP, ] cos 2nt>

Using conditions (5) and (6) and using Dedekind’s theorem we observe
that the series

i 0l

cos 2nt
n| P, |

uMz

is convergent for 0 < ¢ < mw. Hence*(13) is equivalent to showing that

(14) Lo leal _ (vie E).
Now the result follows from (14) by using the conditions (7) and (8).

Proof of Theorem 2. Das [4], in particular, proved that whenever
condition (10) holds, then

SieA@e|N pl— 3%l 4w <.

P |
1.

Now the result follows from Theorem
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4. In this section we apply Theorem 2 to some special cases.
If we take X(t) = logk/t, E = {t: ke < t < &} we get

COROLLARY 1. Let {¢,} satisfy the conditions:
(i) e, = O(log n),
(i) 3 leal/nlogi(n + 1) < <o,
(i) o= |4e,|/nlog(n + 1) < oo,
(iv) Xile.l/nlog(n + 1) = co.
Then

P(t) log kjt e AC|0, 1] — i e A (@) ¢ I N, - Jlr 11 .

Proof. Since the Fourier series of the even periodic function
(log k/|t|)™* is absolutely convergent (see Mohanty [7]) we get that

(15) S

n=1

S" Cos nU

d co .
o log k/u u} <

It may be observed that if we takee, = 1, p, = 1/(n + 1) in Corollary
1, then we get Theorem P.

COROLLARY 2. Let @(t)e BV|0, n] and let conditions (5), (6), and
©) hold. Then S=.¢,A,@)¢|N, pl.

Take X(¢) = 1, E = [0, 7] in Theorem 2. In this case g(n, 7) = 0.

REMARK. Corollary 2 in the case ¢, = 1 gives that

@(t)eBV[O,n]mg‘,lAn(x)e!N, 1 |

n+1
This interalia establishes the result that @(t) e BV[0, 7] is not sufficient

to guarantee the absolute convergence of the series >, A,(x). See
Bosanquet (1) who showed this by taking an example.

5. Throughout this section we consider the case p, = 1/(n + 1)
only. We write ¢, and 7, respectively for the (I, 1/(n + 1)) means
of the sequences {37, ¢,A,(x)} and {ne,A,(x)}. It follows from a result
of Das [4] Theorem 6 on general infinite series that

s 3 |j:‘ = 0(1) if and only if 3% |t, —t,.] = O(1) .

Proceeding as in the proof of above result we in fact get that for
any positive nondecreasing sequence {\,}
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an 3 ;,,; = O(\) if and only if 3 [t. — tus] = O0M) -

Since Theorem P implies that the variation of {¢,} is of unbounded
order, we are immediately confronted with the problem of determin-
ing the order of variation of {¢,}. Because of relation (17) this problem
simplifies to determining the order of 3™, |7, |/n and this is achieved in

THEOREM 3. If g(t) = ®(t)log kjte BV|0, ]. Then

i ;"‘I = O(log log m) .

Proof. We have

= P 2 S:LP(t) cos vidt .
Since ‘
S:sv(t) cos vtdt = g(0) S: l(z)ogsl:;t dt + S do(t) r C(;slx:/@; du
we get
g ‘;"‘ = ——I!I(O)I nZ_',l ni’ S" lo:tk/t <§n]pn_ vcosut)l
S 1dg()| S > L r logtk 7 (i Dy, COS vt)'

= 2 {19(0) G + H.) .
T

Since the series ZLIYCOS nu/log k/u du is absolutely convergent (see
o

(15)) and therefore it is absolutely (X, 1/(n + 1)) summable, we get
that G, = O(1) by using relation (16).

Since Snldg(t){ < oo, using Lemma 2 with log &/t in place of X(t)
we get tha%

m 1 ud sin vt
H, = 0@1
()Z‘l nlog(n+1)li=in —v+1
+ o3 1 S 1 = HY +H?.

=1 1 log (n + 1) vgf(n~ v+ 1)log*(y + 1)
By a result of McFadden (][6], Lemma 5.10) we get

z sinvt _ _
yZA:l m = O(log 7), (v = [k/t])

and consequently
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[928
ot

( logz & 1
H) = O(1 = Oflog 1 .
( ) ].Og ]-C/t nZ:“l n log (/n + 1) ( 0og 10g m)

On change of order of summation in H? and by use of the fact that

m 1 1
:O—_' b
2 (m—y+ Dnlog(n + 1) <”+1>

we get

U 1
H=01)>Y — - =001 ) ;
()u=1vlog20)+—1) o) (m

and this completes the proof.

REMARKS. In view of Corollary 1, one is naturally led to deter-
mine suitable sequences {e,} such that g(t)e BVI]0, n] = 3, ¢, 4.(%)
|N, 1/(n +1)]. Butin view of Theorem 3 it is enough to determine
the sequence of factors {¢,} such that >7_ ¢ A (x)e|N, 1/(n + 1)
whenever 3™ |7, |/n = O(log log m). Such a result is contained in
the more general result of Das [5].
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