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If G is a locally compact Abelian group, any subalgebra
A of M(G) that contains a dense ideal of L!(G) can be map-
ped homomorphically onto C(X) for any Helson set K in the
dual group. Then, by choosing a Helson set homeomorphic
to the one-point compactification N, of the natural numbers,
the ideal structure of A can be explored from known proper-
ties of C(N.). As special cases normed subalgebras are
considered and for them — by different techniques — in-
formation on their countably generated, closed ideals J can
be obtained. Necessarily Z(J) is open-closed; if G is compactly
generated and A contains such a nonzero J, G must be 7" X
C[C a compact group] and J must consist of those L' functions
whose Fourier transforms vanish on 7" X E, where £ is a
cofinite subset of the dual of C. In particular, a Segal algebra
on G (satisfying mild restrictions) can have a countably gen-
erated regular maximal ideal if and only if G is finite.

The paper continues the investigation of Banach algebras from
the algebraic point of view begun in [5] and extends some of the
theorems there. The idea of transferring properties of C(V.) to A
has also been explored for uniform algebras 4 in [6]. All our results
confirm the expected algebraic complexity of Banach algebras as well
as the more surprising pivotal role which the Silov boundary plays
in determining algebraic structure.

1. Prime ideals. Let G be a locally compact Abelian group
with dual group I', and consider any subalgebra A of M(G) which
contains a dense ideal I in LYG). I contains the L' functions whose
Fourier transform have compact support, since I has void hull and
LYG) is regular. For ve ', let L[F,] denote the ideal of functions
in A whose Fourier transforms vanish at v [on a neighborhood of 7].
Notice that a prime P contained in the maximal ideal I. necessarily
contains F,. For if i vanishes on a compact neighborhood U of v,
and ge A is chosen so that §(v) =1 with supp < U, then p*g =
0c P, but g¢ P; whence e P. Thus a prime of A can be contained
in at most one maximal ideal of form I,, and if G is compact, no
prime can be properly contained in any I,. As we shall see, the
situation is quite different in the noncompact case.

A compact set K< I" is called a Helson set if every fe C(K),
the continuous complex-valued functions on K, is the restriction to
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K of the Fourier transform of some ge L'(G). Notice that for such
a K, AK = C(K). For if feC(K) with f = §|K, g€ L(G), choose
he A whose transform is identically 1 on K and observe f=g*h|K.
Thus if K is a Helson set, the map ®: f — f|K is an algebra homo-
morphism of A onto C(K). Notice if I & J are [prime] ideals of C(K),
P NI) & P7Y(J) are [prime] ideals of A. Thus if & and & are infinite
chains of primes in C(K), #7(%’) and ¢7(<) are infinite chains of
primes in A and (&) N P () = P(¥ N 2).

Let C(X) denote the real-valued continuous functions on any
space X, and for Bc C(X), set B, = BN C(X). We have

LemMMA 1.1. P— P + P ts a lattice preserving one-to-one corre-
spondence between the prime ideals of C.(X) and those of C(X).

Proof. P 4+ 4P is clearly an ideal of C(X); suppose f, g< C(X)
with fge P+ iP. Then |fg’ = fgfge P + iP, so actually | fg|*c P.
But then |f|*¢ P or |gl?c P, hence |f|eP or |g|cP, and finally
|f1"*e P or |g|'*e P. Thus either f = |f|"*(|f|"* sign f)e P + iP or
g = 1gl"({g|"® sign ¢g)e P+ iP. Every prime @ in C(X) is of this
form, since @, is prime in C(X) and Q = @, + iQ, [4, 3.1, p. 71].
Finally if P+ 4P =Q + iQ, P = (P + iP), = (Q + iQ), = Q.

These simple observations lead to the following

THEOREM 1.2. Let G be a noncompact LCA group, A a subalgebra
of M(G) containing a dense ideal of L (G). Then for any v I, there
are 2° paitrwise disjoint infinite chains of prime ideals of A contained
wn I, in particular, krull dim A= .

Proof. Since I" is nondiscrete, it contains a Helson set £ homeo-
morphic to the Cantor middle third set on the real line [16, 5.2.2,
5.6.6]. If v’ e K, the translate C = B — v' + v is still a Helson set
equivalent to the Cantor set, and it contains v. Since C is metrizable
and has no isolated points, we can find a sequence of distinet points
Y. € C\{7} so that v,— . This sequence together with its limit point
forms a Helson set K by Tietze’s extension theorem. K is homeo-
morphic to N., the one point compactification of the natural numbers,
and composing the induced isomorphism C(K) = C(N.) with ¢: 4 —
C(K) above, we obtain an algebra homomorphism @ of A onto C(N.,)
such that &(I,) = M, = {f € C(N.): f() = 0}. According to [8, 14G,
p. 213] there are 2° maximal chains of prime ideals of C.(N.) contained
in M,N C(N,), any two of which have only M. N C,(N.)in common.
For any such chain &, let € = {07(P + iP): Pe &, P = M. N C.(N.)}.
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1.1 and the remarks preceding it guarantee that & is a chain of
prime ideals of A contained in & '(M.) = I,. Plainly if & is any
other such chain, & N % = @. Each chain & is infinite, since P—
O P + iP) is a bijection & — % and % is infinite. For otherwise,
% would consist of distinct primes P, < P, < --- < P, < M_.N C.(N.).
Since & is maximal there would be no prime ideals of C,(N,,) strictly
between P, and M, N C,(N.), in violation of, say, [4, 3.1, p. 71]. In
particular, then, ascending chains of primes in A of arbitrary length
can be exhibited, so that krull dim 4 = .

Notice that if I is separable, each I, will contain exactly 2° primes.
For in that case C(I") has cardinality ¢, the Fourier transform embeds
A in C(I") and the remark follows from 1.2.

Observe also that none of the primes of A constructed above can
be a finitely generated ideal. For if @~ (P + ¢P) is finitely generated,
so is (@ (P + iP)= P + ¢P. Butif {f, ---, f.} generates the prime
P+ P over C(N.), so does {|f.|"% ---, | f.["*}, and hence this set
generates P over C,(N.). But then [2, §3, Thm. 1} P is generated by
an idempotent f, so that o = Z(P) = Z(f) is isolated in N, an
impossible conclusion.

ProrosiTION 1.8. If G is noncompact and A is any subalgebra
of M(G) containing a dense ideal of LNG), then mwot every finitely
generated ideal of A is principal.

Proof. Otherwise, for any Cantor Helson set Kc I, C(K), as a
homomorphic image of A, would have the same property; K would
then be a metric F-space [8, 14.25], hence discrete [8, 14N].

For A as in 1.3 and Ec I', let I;[F;] denote the measures in A
whose Fourier-Stieltjes transforms vanish on E [on a neighborhood of
E]. For Jc A set Z(J) = N {££7(0): pee J}.

ProposITION 1.4. Take G and A as in 1.8. If J is an ideal of
A strictly between F, and I,, there are ideals J, J of A so that F,C
JcJcJc I, with all inclusions proper.

Proof. As before, there is an algebra homomorphism @ of A onto
C(N.) so that &(I,) = M... By [4, 4.5, p. 75], there are ideals I and
I of C(N,) so that F,cIcoJ)cIc M, (strictly). The conclusion
follows with J = @7(1), J = @7X(I).

By repeated use of 1.4 we conclude that through any such J we
can thread infinite ascending and descending chains of ideals of A
lying between F, and I,. Although in general J will not be prime,
it can be chosen so if J is countably generated.



78 WILLIAM E. DIETRICH, JR.

PROPOSITION 1.5. Take G and A as in 1.3. If J is a countably
generated ideal of A for which Z(J) =", there is a prime ideal P of
A strictly between J and I,.

Proof. With @: A— C(N,) as in 1.4, &(J) is a countably generated
ideal of C(N.) and Z(®(J)) = o. Since oo is not isolated, F. =+ M.,
and [3, Thm. 3, p. 175] yields a prime ideal @ of C(N,) strictly
between @(J) and M.. Take P = 07(Q).

In particular a maximal ideal I, in A is never countably generated
(compare 3.10).

It is not hard to see that in 1.4 and 1.5 v can be replaced by,
say any proper nonvoid closed subset of Cantor Helson set in I
Unfortunately this interpolation method cannot be forced much beyond
that. Contrast the fluid simplicity above with the halting computations
in 3.1 below, where primes are obtained constructively.

2. Normed ideals and subalgebras. Call an ideal [subalgebra]
A of M(G) a normed ideal [subalgebra] in M(G) if A is a Banach space
under some norm || ||, which satisfies:

(1) jipll = allplls (£€ A, a constant)

(ii) K = {fe LY(G): supp f is compact} < A.

Consider the following conditions on a normed subalgebra A:

(iii) There is an « > 0 such that given v < I" there is a neighbor-
hood V of v so that ||%]|, < a|/k|, whenever ke K and supp £ V.

(iv) There is some r > 0 so that ||vkll, < »!| k||, whenever k ¢ K,
vel.

Notice (iv) implies (iii). For choose any compact neighborhood C
of 0 in I"'. B = {f e L(G): supp fc C) is a closed subspace of both
A and LY(G) by (i) and (ii). The open mapping theorem together with
(i) yields a constant 8> 0 so that || fll, = Bl fll, whenever feB.
For ye I'set V=7 + C; if ke K and supp k C V, 7k € B so that k|l =
77kl < r||7k|l. < rBl|7k], = rB||k],- Thus condition (iii) holds with
« = rB. The converse in false (cf. [1, §7, p. 276]).

A finite intersection A = (); 4; of normed ideals [subalgebras]
is again a normed ideal [subalgebra] when given the norm ||z, =
S lltlla,. If each A; satisfies (iii) [(iv)] with «;, then A will satisfy
(iil) [({v)] with a = >; a;.

Tensor products A®, B of normed subalgebras 4 in M (G) and
B in M(H), completed with respect to the projective norm |ju]|, =
inf {301 gl vallz: v = S ¢t @ N}, can also be viewed as normed sub-
algebras of M(G x H). Indeed the map >; #; @ X;— Dutt; X \; is an
algebra isomorphism of A& B into M(G x H), since it factors into

~A

AQB-25 AR B4 o x 0) = M@ % H)
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where ® is a restriction of the natural algebra embedding C(I") ®
C(2)— C(I" x 2). From the inequality

125 28 X Nl = D1l Il = ab 30l allal|Malls

we see that A ® B— M(G x H) is continuous, so that it extends
continuously to the completion A &), B; in particular (i) holds with
constant ab.

If K, K, and K are the functions on G, H and G x H whose
transforms have compact support, then K, ® K, is || ||,-dense in L'(G) ¥
L'(H); since the above embedding process gives a Banach space equi-
valence LY(G) &, L(H) = LG x H), given fe K with

supp f C int (C, X C,)

[C, and C, compact in G and H], we can find a sequence {f,} from
K, ® K, so that ||f — f.ll.—0 and supp fAnCCI x C, for each m.
Choose h; e K, with ﬁ,-IC,- = 1 and observe that using (i) and the open
mapping theorem as in 2.2, we may find «, 8 > 0 so that ||g|l. Zal|g]l.
and |||l Z Bk, Whenever g and k are L' functions whose transforms
are supported on supp h, and supp h, respectively. With

M = {{hdl: ] Ba fls

it follows that ||u||, < aB8M ||u||, whenever u e K, Q K, and supp @ C
C, x C,. For if >, k; ® k! is any representation of u, u = u(h, ® k,) =
> kixh, ® ki+h,, whence

ully < 3 lksx by |l 4l| Ki ol = @Bl B[l Balls 3l Ksll: | EE L -

Since LYG x H) = L'(®) ®, L'(H) isometrically, we conclude ||u]|, <
aBMing {3 ||l Kl w = ks @ k) = @M ||ul,. Thus

whence for some ge A®, B, ||f, — gll,—0. But || f —gl. <I||f -
falli + abl|fo — gll— 0, so actually fe A®, B; that is, (i) holds.

If A and B satisfy (ili) with constants « and o', then AR, B
satisfies (iii) with 2aa’. For if (v, 7)€" X 2 is given and if corres-
ponding neighborhoods V, and V, are chosen for 4 and B, find compact,
symmetric neighborhoods W, and W, of 0 in I" and 2 so that Wi( W, +
W) < 2m(W,) and v; + W, + W, C V,; choose h;e€ K; so that h;|v; +
W, =1, supp ﬁic Vi and ||kl = {m(v; + W; + W)H(m(W))}"* = Ve
[16, 2.6.1]. If ke K, ® K, with supp kv, +W, X v, + W, and if
>uk; QK is a representation of k, > k;xh; @ kixh; is also and we
have ||kl < 3 | ksx h |4l Kixhel s < aa || Bl [ e |l 20 1 i [ K]l Thus

[klls = 2aca Inf {35/ ks ||, [| kil b = 2ok: @ ki) = 2aa’||k]],. Since K, Q
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K, is || ||,-dense in K this inequality holds for any k € K whose trans-
form is supported on v, + W, X v, + W,. Also if (iv) holds for 4 and
B with constants » and 7/, then [[(v, Dull, = inf {3 |7 f:lll99:]15:
U= 3,1 &g} = rr'llull, so that (iv) holds for 4 ®p B with constant
rr'.

Unfortunately A ® B completed in some other cross norm cannot
always be realized as a normed subalgebra of M(G x H) in this way.
For example consider L'(G) ® L'(H) completed with respect to the

biequicontinuous norm

Jull = sup {| 2| F@7@ds | a.)e @iyl e 17@), o' e L)
W= S i@ S L (0]l S 1)

If L(G) &, L'(H) is a normed subalgebra of M(G x H), then it embeds
in L(G x H) and Jju|, < allu|l,; since LY(G x H) = L(G)®, L'(H)

isometrically, [|u]l, = ||u|; < a|l%|l, £ a|lu|],, so that actually
LNG) @, L(H) = L{(G) ®. L(H) .

Applying a theorem of Grothendieck [10, Chp. II, §2.1, p. 42] when
G = Z we conclude that L'(H) is a nuclear space. But since no infinite
dimensional Banach space can be nuclear, this conclusion is absurd
whenever H is infinite.

ExampLES. The essential L'(G)-modules A in L'(G) defined in [12,
39.32] are examples of normed ideals. For A = LY(G)=A [12, 39.82.b.ii],
so that M(G)~A = [M(G)«L'(G)] A = L(G)+A = A; that is, 4 is an
ideal of M(G). (i) is [12, 39.32.7]; (ii) follows since A is a dense ideal
of LG) which, by regularity of L(G), must contain {f e K: supp f N
Z(A) = @} = K[Z(A) = »]. Algebras of this type include A?(G) [13],
the Wiener algebra _Z/(E) [12, 39.33] and its generalizations [15, p.
127]; and for compact G, both L?(G) and C(G). Each of these satisfy
(iv) with » = 1.

The Segal algebras S defined in [15, 6.2.0, p. 126] are also normed
ideals. For it follows from [15, 6.2.3, p. 128] that LYG)=S is dense
in S; the Hewitt factorization theorem [12, 32,22] then implies

L(G)«S =S,

and as above, S is an ideal of M(G). (i)-(ii) are [15, 6.2.2]. Actually,
we have

LeMMA 2.1. Let A be a normed ideal in M(G). The following
are equivalent: (a) A is an essential L' (G)-module in L'G); (b) A is
o Banach algebra with an approximate identity on K; (¢) A is a Segal
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algebra.

Proof. (a) implies (b) is [12, 39.32.g]; if (b) holds, Kc A c LYG).
For if {f.} c K is an approximate identity for A, then for each fe A4,
{faxtt} contains a sequence {f,, *f} converging to . This sequence
is Cauchy in LY(G) by (i), and converges to some fe LY(G). Again
by (i) we see that for fixed ve I', f(7) = lim,_., S (NEM) = f(7), so
that ¢t = fe LY(G). Since L'(G)=A is obviously dense in 4, (a) holds.

If (¢) holds, then so does (b) [15, 6.2.3, p. 128]. If (b) holds, we
see as above that K is A-dense in Ac LY(G). It follows that A is a
Segal algebra [1, p. 275].

Other examples of normed ideals include M(G) itself; in fact any
closed ideal of M(G) containing LYG). Thus M(G), the measures
whose Fourier-Stieltjes transforms vanish at <, and L'(G)'*, the
intersection of all maximal ideals of M(G) containing L'(G) are normed
ideals in M(G). All such examples satisfy (iv).

Suppose ¢ is a positive, regular Borel measure on I" (not neces-
sarily finite). For pe[l, =], set A?(0) = {te M(G): fi € L*(0)}. With
the norm || ¢£|? = ||| |+ || ££]],, A%(0) is & normed ideal of M(G). Indeed,
K c A”(o) since ¢ is finite on compact sets; completeness is standard.
By judicious choice of o, one obtains normed ideals exclusive of those
above. If ¢ is continuous, A”(c) satisfies (iii) but typically not (iv).

All the examples above satisfy |/Inxgll, < blIN|| || ¢l Ove M(G),
pre A, b constant), and finite intersections of such will also. However,
since this module property plays no role in what follows, we have
excluded it from our definition of normed ideal.

Plainly any closed subalgebra of a normed ideal which contains
K is a normed subalgebra. Examples include the closed subalgebras
of M(G) containing L'(G)— in particular the L-subalgebras of Taylor
[15, 16] whose maximal ideal spaces coincide with I, as well as M,(G),
the measures whose transforms are uniformly continuous on I'. The
“normed ideals” of LYG) introduced by Cigler [1] are also normed
subalgebras of M(G).

It is not hard to see that the completed tensor product of Segal
algebras A, B is again a Segal algebra. Indeed it follows from

LYG) ®, L((H) = LG x H)

that A@,,B is a (dense) ideal of LG x H); if {¢.} and {v;} are
approximate identity for A and B, {¢t, ® v;} is an approximate identity
for A ®, B. Since A&, B is a Banach algebra, the remark follows
from 2.1. We obtain new examples of Segal algebras in this way:
A™(R) ®p A*(R), for instance, is not embedded in L'(R? as AYR? for
any ¢. A corresponding observation can be made for Cigler’s normed
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ideals in LY(G) [1].

3. Countably generated ideals. Since K is a dense ideal of
LY{G), 1.2-1.5 apply to any normed subalgebra in M(G). We also have

THEOREM 3.1. Let A be a normed subalgebra in M(G) and {t,}
a sequence in M(G) such that p,«Ac A for all n. If E = ) £:'(0)
has a nonempty boundary O0E in I and J is a closed ideal of A with
Z(JYC E, then there is a prime ideal P of A so that for some veoE,
Su.«AcPcl, but J ¢ P.

Proof. I = 3\p,+A denotes the vector sum of the subspaces
{¢t,xA}. Clearly we may assume ||, !/, < 27", Fix v,€0F and take
some compact neighborhood C of v, ¢ = >, |f,] is a continuous
function on I" whose zero set is E, so we may select a sequence
{7.} of distinet points of € so that 0 < &(7,) < 1/k!. The set {v.}
has some accumulation point ve CNoE. Standard arguments (ex-
hibited in [9, 2.1]) yield a sequence {f.} C K so that fu(v,) =1 = || fulls
supp £, © C and supp £, Nsupp fo, = @ if m = m. Since 7, ¢ Z(J),
there is some \,€J with X,(v,) = 1. Modification of [16, 2.6.3] yields
for fixed ¢ > 0 and each #, some k, € L(®) so that k,(v,) =1= /%, |, and
Wk, xn, [l <1+ e.

For assuming v, =0, set A =, and 0 = ¢/4(1 + [[N]]), pick a
compact K< G so that [N(G\K) < 0, let W= {vel:|l—(z,7)| <9,
ze K} and find a compact neighborhood of 0 in I” so that V— V< W.
Choose s, te L¥(G) whose Plancherel transforms are X, and X_,, and
define k(x) = s(x)t(x)/m(V) where m is Haar measure on 7. k(0) =
1 = ||k]], and since

k@) = | (6w ~ 1) ~ k@l + | k@) .
Hendy = | 1 = kL @) + 1RO 111

Computation [16, p. 50] reveals that the integral on the right hand
side is less than ¢; thus ||kx\], <1 +¢. If v, is arbitrary, apply the
above argument to ¥,,, and for the % so obtained, set %, = v,k.
Certainly k,(v,) = 1 = ||k,|l, and

Hkn*MHl - E\\vn(knx’\‘n)Hl = [‘!k?n?\’ﬂi‘il < 1 + €.

B = {ge L'(G): supp § < C} is a closed subspace of both 4 and L'(G)
because of (i) and (ii). The open mapping theorem together with (i)
yield a constant 8 > 0 so that |[gll, < Bllg|, for all ge B. Thus the
series >>. 27" f, «k,+\, is normally convergent in A and defines an
element f in the closed ideal J. S = {f"x0:0¢€ A\I, and m = 0 or
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o = 0, and m > 0} is a multiplicatively closed set in A which we claim is
disjoint from 3 (¢, A + Cp,). For suppose on the other hand, f™xc =
e, p+(0; + «;) for some nonnegative integer m, o¢ {0} U A\L,, c;¢
A, a;eC. Find a 6 > 0 and a neighborhood V of v so that [6(8)| =
0 for 8¢ V. Infinitely often v, lies in V and for such %,

O
ot 2 HICAR AT 17 A TIN
(zm)k N l/k' = [ o('yk) = 12:1 #(7, J’O-'L( /k) + a@-i

< Sllodll + lal -

But this is quite impossible, since, as the kth term in the MacLaurin
series for e° af/k! — 0 for all ac C.

In particular, INS = ¢ and applying Zorn’s lemma, we find a
prime ideal P of A containing [ and disjoint from S. Clearly IC
Pc I, and Jg P.

The following easy corollary significantly generalizes [5, 3.1].

COROLLARY 3.2. Let A be a wnormed subalgebra in M(G). If J
18 a closed, countably generated ideal in A, then Z(J) is open-closed
wm I,

Proof. 1f {p,} generatesJ, J = >, ¢, « A + Cu, and Z(J) = N £.(0).
But if Z(J) is not open, the proof of 2.2 yields some feJ\>, ¢, = A +
Cre,.

For a normed subalgebra A of M(G) and a closed ideal I of
L(G), set I' = {#re A: K¢ I}. Notice I’ is a closed ideal of A. For
(1) makes it closed; if pe I’y ne Aand fe K, f+(uxN)e Ixnc I. This
last inclusion follows from a corollary to Cohen’s factorization theorem
[5, 1.5]: I=IxIL[peZ(I)], so that I\ = [«(=\)C I« L'Y(G) L.
Further, the map I— I’ is injective. For if ge I' N K with supp § =
C, we may find some k¢ K whose transform is identically 1 on C, so
that g = kxge Kxgc I. Thus if I'=J, INK=I'NK=JNK=
JN K, and taking closures in LYG) and using an L' approximate
identity from K, we have I = J.

Since plainly Z(I) = Z(I'), Helson’s theorem [12, 39.42] indirectly
yields uncountably many closed ideals of A with common zero set F
whenever E is a set of nonsynthesis for LYG). Since such a set
cannot be open in 77, 3.2 implies that none of them are countably
generated.

Using an L' approximate identity, we see that if A is contained
in LYG), I = IN A; since every closed ideal of a Segal algebra A is
of this form [12, 39.32.k], I— I’ is a bijection, and we conclude
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CorOLLARY 3.3. If E is a set of monsynthesis for LYG), mno
closed ideal in a Segal algebra A whose zero set is E can be countably
generated.

Notice also in passing that Malliavin’s theorem [16, 7.6.1], together
with the above injection, implies that spectral synthesis fails for every
normed subalgebra of M(G) whose maximal ideal space is I" whenever
I" is not discrete. Examples include the L-subalgebras of Taylor such
as LYG)"*, as well as tensor products of such, since the spectrum of
a product is the product of the factors’ spectrums [14, 4.2].

Since all the specific examples mentioned in §2 satisfy (iii), their
intersection with M(G) will also, and we have a sufficient plenty to
which the following generalization of [5, 3.6] applies.

THEOREM 3.4. Let G and H be LCA group with duals I' and Q
respectively; suppose H is compact and I' is connected. Let A be a
normed subalgebra of MG x H) satisfying (iii). Then

(a) if G is nondiscrete, 0 is the only closed, countably generated
ideal of A whereas

(b) if G is discrete, a closed ideal J in A is countably generated
if and only if J = Ir, C K where E s a cofinite subset of Q.

Proof. Let J be a closed, countably generated ideal in A. Z(J)
is open-closed (3.2), and hence of the form I' x E, EcC 2.

J= 3 meA+ S Cn,

for some sequence {u¢,} cJ < M(G x H) with |[¢, ]| £1/2". Let > AxC
denote the direct sum of countably many copies of A x C, and A, the
subspace of sequences whose entries past the nth one are all zero.
A, is a Banach space with norm ||{\;, &}l = 3, |nlle + |a;l, and
with the final topology induced by the inclusions 4, C >, A X C, 3 A X
C is the strict inductive limit of the A,. The mapping T 3 A x C—
J given by T({\;, a;}) =3 tts+(\; + ;) is linear, continuous and surjec-
tive. A theorem of Dieudonné and Schwartz [7, Thm. 1, p. 72]
implies T is open. Hence if U= {{p, a;}e>, A X C:||N]|l. =<1 and
la;] <1 for all 7}, thereisa 6 > 0 so that B(0, 9)c T(U). It follows
that there is a constant M > 0 so that given peJ, there are )\, -,
reA and @, --¢, a,€ C with

(%) 1= 3 O + @), [Dlla < M 122l

and

| S M|\l i=1,2 oo, 7.
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Since |z ]| £ 1/2F, we may choose n so large that >, (1 +
a)Me || zt;]| < 1/2, where o and « are the universal constants in (i) and
(iii). Let ¢ = 1/2(1 + a)Mna and choose C < I' X £ compact so that
|27, )| <e/2 off C for i=1, .-+, n

(a) If E = Q we are done. If 7,¢ E°, then since [ is not compact,
(v, 1) € C for some v,€ I". Define o, M(G) by

o) =\ 7w, v) -

Since 0(v) = f:(7, 7o), 67| <¢e/2 for ¢ =1, ..., 2. Choose a neigh-
borhood V of (v, %) in I X 2 satisfying condmon (iii), and then a
compact neighborhood W of v,in I" so that W x 7, V. Exactly as in
2.2, we can find some ke LYG) so that suppkc W, k(v,) =1=1%k|, and
lo;xkl|,<e for 4=1 ---,m Since 7k:(x, ¥)— 7 (y)k(®) is in
K, a;pr+ ok € J, where a; = | (v, 05) | /2o, 1) Wwhenever f,(v,, 1,) = 0,1
otherwise. Computations with transforms show that a;te,«nk(e, y) =
a. (o xk(x). Applying (ili) we see

Nagpe = k|l = allapt =k |l < ajag ) (7000 kil
= allkll [l = a2t

The series 3.2, a4 =k is therefore normally convergent in A and
defines an element /¢ in the closed ideal J.
Select v, e A and ;e C satisfying (x) for x. For )\, = v,/a; and
B; = Lo, we see that pt = 3, sty + 5;) and [N, = Ml
[

|B:1 = M||tt]l,. In particular,
T — A~ .
218070, )| = 2 @l D0k (T, 70) = (7, 70)
= Zf J‘az(%\,, ) | ‘//\\i(ﬁ/o, /]o) + 74l
But then if |X\i(v,, 7)) + 8:] <1 for 4 =1, ---, r, the inequality forces

Ziv, ) = 0 for all 4. But this implies (v, 7,) € Z(J), a contradiction.
We conclude |X,(Y, 70) + 8;/ = 1 for some j, and since lla,pt, =7k, <
allo;«k||, for all 4, we reach the following absurdity:

L= ainll + 1851 £ 1+ oM, £ 50+ a)Maopki,

+ S+ QMalkl sl < (L -+ a)Maas + _;: ~1.

(b) Since Q is discrete, the compact set C is contained in a product
I’ x F, Fc Q finite. But then if the complement of E is infinite,
there is some 7, ¢ F' U E. Taking any v,€ I", we have (v, %) € CU Z(J),
and the argument above yields the required contradiction; that is, £°
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must be empty or a finite set {n, ---, »,}. Since [I" is compact, J <
Iy = {fe L(Gx H): supp f c I" x E°} C K; in fact the A-topology and
the L'-topology agree on I, by the open mapping theorem and (i).
J is therefore a closed ideal of L'(G x H) with zero set I" X E, and
the regularity of LYG x H) yields I;,; = J. The converse is obvious,
since g(w, y) = 2ii- 0(®))(y) generates Ir.pz.

COROLLARY 3.5. Suppose A is a mnormed subalgebra of My(G)
satisfying (iii). Then A is a countadly generated ideal of itself if
and only if G is discrete.

Proof. Certainly if G is discrete, M(G) = LG) = KC A and A
is generated by its identity. Suppose on the other hand, G' is non-
discrete and A = > ¢, xA + >, Cp, for some sequence {¢,} C 4. Ex-
amine the proof of 3.4 with H = 0,J = A: since Z(J) = @ and [ is
not compact, we can still pick v,¢ C U Z(J) and obtain the required
contradiction.

COROLLARY 3.6. If G is a normed subalgebra of M(G) satisfying
(i) and " is commected, then mo monzero closed ideal of A can be
countably generated.

Proof. Suppose J is a countably generated, closed ideal in A.
Then Z(J) = I" or ¢ (3.2). Plainly if Z(J)=1I,J =0; if Z(J) = 4,
3.4.a with H = 0 implies G is discrete.

COROLLARY 3.7. (Compare [9, §4, p. 424].) If G is nondiscrete,
A is a normed ideal in M(G) satisfying (i) and I’ is connected,
then mno momzero subspace of the form >, p,*A, p,€ M(G), 1is closed
m A.

Proof. Otherwise, 3.1 and a simplification of the argument in 3.4
shows, as in 3.6, that G is discrete.

Condition (iii) can be deleted if we assume A is Tauberian on I.
For example we have

ProrosiTiON 3.8. If A is a Segal algebra on G and I' is conm-
nected, then no monzero proper subspace of the form > t,xA, €
M(G), is closed in A.

Proof. Otherwise, the zero set of the closed ideal J = >, ¢, x4
is ¢ or I' (3.1); since A is Tauberian (2.1, [12, 39.32.g], [12, 39.27])
and semisimple, J = A or 0.
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THEOREM 3.9. Let G be a compactly generated LCA group and
A a mormed subalgebra of M(G) satisfying (iii). Then a nonzero
closed ideal J of A is countably generated of and only if G is Z" x C, C
a compact group, and J consists of those fe K whose Fourier
transforms vawish on T" x E where E is a cofinite subset of the
dual of C.

Proof. G is a group of the form R™ x Z* x C, C a compact group
[11, p. 90]. If A has a nonzero closed, countably generated ideal .J,
then 3.4.a applied to H = C shows that m = 0. Thus G=2"x C
and 3.4.b applied to H = C gives J the required form.

COROLLARY 3.10. Let G be an LCA group, A a normed subalgebra
of My(G) satisfying (iii). Then A has a countably generated ideal of
the form I, ve I, if and only if G is finite.

Proof. If I, is countably generated, 3.2 implies v is isolated in
I", so that G is compact. But 3.9 then implies the singleton {v} is
cofinite in I', so that actually I is finite; since finite Abelian groups
are selfdual, we see G is also. Of course if G is finite, the proof of
8.4 shows that every ideal is principal.

Since " is the maximal ideal space of a Segal algebra on G, we
have in particular

COROLLARY 3.11. A Segal algebra on G which satisfies (iii) has a
countably generated regular maximal ideal if and only if G is a finite.
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