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Separable algebras have been studied recently by M.
Auslander, D. Buchsbaum and Chase-Harrison-Rosenberg.
The question of a Galois theory for linear topological rings
opposite to the Krull type theory obtained in the above works
was raised by H. Rohrl. In this paper, a Galois theory re-
lating the complete subalgebras of restricted type of a com-
plete algebra A to a set of subgroups of a discrete group G
of automorphisms of A is developed.

The notion of a linear topological module has been discussed in
[1], [5], [6], [7]; while the concepts pertaining to separables algebras
are now available in the monograph [4] for the most part. We
employ two results of [3] which we will state below. All rings
considered will be commutative with 1.

/
DEFINITION 0.1 [3]. Two ring morphisms A » 7? are strongly

g

distinct if, for each nonzero idempotent ee B, there is α e i with
f(a)e Φ g(a)e. Where B is connected, / and g are strongly distinct
if and only if they are distinct.

THEOREM 0.2 [3]. Let G be a finite group of automorphisms of
the ring A having (pointwise) fixed ring k. The following statements
are equivalent:

( 0 ) A is a separable k-algebra [and the elements of G are pairwise
strongly distinct}.

( 1 ) There are families of elements of A, (a;ι)?=i, {VtYLi with

n

Σ ^%σ(Vi) = δiσ

for each σ e (?, where δlσ is the Kronecker delta.
( 2 ) For each σ e G\{ί\ and each maximal ideal m < A, there is

ae A with a — σ(a) g m.
/

( 3) For each connected k-algebra B and each pair A > B of
g

k-algebra morphism, there is a unique σ e G with σg = / .

Proof (0) — (1) -> (2) -> (0) is contained in [3], Theorem (1.3), and
the implication (2) —(3) is Corollary (3.2) of [3]. We establish (3)->
(2). Let m < A be a maximal ideal and suppose σ e G\{1}. Then the
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A -algebra A/m is connected, so the two A -algebra morphisms q, σq:
A —* A/m are distinct (q is the quotient map), otherwise σ = 1. Hence,
there is a e A with a — σ(a) $. m.

DEFINITION 0.3 [3]. When any of the equivalent conditions (0)-
(3) of (0.2) hold for (A, G), we call {A, G) a Galois extension of k
with group G.

Note that when A is connected and (A, G) is a Galois extension
of k, (0.2)(3) shows that G the full group of A -algebra automorphisms
of A.

DEFINITION 0.4 [3]. Let (A, G) be a Galois extension of k and
let B be a subring of A. B will be called G-strong if the restrictions
to B of any two elements of G are either equal or strongly distinct.

THEOREM 0.5 ([3] 2.3). Let (A, G) be a Galois extension of k.
Then there is Galois correspondence {g, r) between the set of separable
k-subalgebras of A which are G-strong and the set of subgroups of G.
If B is a separable G-strong k-subalgebra of A, then g(B): = {σ e
G\σ(b) = b for all b e B}. Moreover, if σeG, g(σB) = σg(B)σ'1. A
subgroup H of G is normal in G if and only ifr(H): — {ae A\σ(d) =
a for all σ e H} is a G-invariant subalgebra of A, in which case (r(H)f

G/H) is a Galois extension of k with group G/H.

We now pass to linear topological case.

DEFINITION 0.6. The ring A with a filter basis of ideals ^(A)
has a linear topology with ae A having a basis of neighborhoods the
family (α+ U)Ue %S(A), and the pair (A, %f(A)) or briefly A will be
called a linear topological ring. A linear topological k-algebra is a
continuous ring morphism

(fcf mm - ^ (A ^{A)).

1* Quasi-Galois extensions* Consider the following situation:
(0 ) k —> A is a linear topological A -algebra.
(1) F is a final subset of <%f(A).
(2) IeF implies that A/1 is a connected Galois extension of

kjk Π / with Galois group G7.

PROPOSITION 1.1. There is a unique contravariant monic valued
functor G: F—>Gr (Gr is the category of groups) such that G(I) = GIf

and such that I ^ /' in F implies the commutativity of the diagram:
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All ^ Ά All

A/Γ ° > A/ΐ

for each σ e (?(/'), where aΓ

r is the canonical quotient map.

Proof. For each σ e G(Γ), there is by (0.2), (3), a unique σ' e G(I)
such that σ'a1-, = a\,a. We define G(Γf I){o)\ = σ'\ The uniqueness
available in (0.2), (3), guarantees that G(Γ, I) is a group morphism,
and the surjectivity of aj/ entails the injectivity of G(Γ, /).

DEFINITION 1.2. The triple (A, F, G) will be called an extension
of k if:

( 0 ) k —* A is a linear topological ά-algebra.
(1) F is a final subset of U(A); so F is a filter basis.
( 2 ) G: F —* Gr is a contra variant monic valued functor such that
(i) G(/) is a finite subgroup of the group of k/k Π /-auto-

morphisms of A/I;
(ii) for each I ^ Γ in F and σeG(Γ) the diagram of (1.1) is

commutative.
If for each IeF, (A/1, G(I)) is a Galois extension of k/k Π /with

Galois group G(/), we will call (A, F, G) a quasi-Galois extension of
k with group G.

An immediate consequence of (1.1) is the

COROLLARY 1.3. If (A, F, G) is a quasi-Galois extension of k, and
if for each IeF, A/1 is connected, then the functor G is uniquely
determined.

Let (A, F, G) be an extension of K. We will define a group G
of continuous A -automorphisms of A

(A = lim A/I and Ϋ^{A) = {ker (A — A/I)Ie

and show that when (A, F, G) is a quasi-Galois extension of k, then
there is a Galois correspondence (g, r) between a specific class of
subgroups of G and a class of complete fe-subalgebras of A. Each of
these classes is characterized by the quality of their approximations,
i.e., we require that their approximations satisfy a specific condition
for each IeF.

Since F is a filter basis, the family (G(I))IeF of groups is cofiltered,
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and we can form the colimit G: = lim G(I), the colimit being taken
over IeF. We denote by gz:G(I)—+G the canonical colimit mor-
phisms; they are injective, and for / <; /' in F yield a commutative
diagram:

G(I') -^'-^L G(I)

Qi Qi

s~i /y

Another useful description of G is obtained as follows. Fix Γe F
and consider any / ^ Γ in F. We then have a commutative diagram:

A/I^ΆA/I

A/Γ σ > A/Γ

for each σeG(Γ). Evidently, the family of morphism (G(Γ, I)(σ))Jt*Γ

is filtered and compatible with the quotient maps aτ

Γj so we can form
the limit σ of this family, obtaining, for each I ^ /', the commutative
diagram:

A σ >A

aj a i

We let H denote the set of all such σ for ΓeF and σeG(Γ) arbi-
trary. The foregoing diagram shows that each σ is a continuous
fc-automorphism of Ά. If σ, τ e H, say σ e G(Γ) and τ e G(τ"), we define
στ = μ, where μ = G(Γ, I){σ). G(/", /)(τ) and / ^ Γ, Γ. Since F is
a filter basis, /5 does not depend on /, and so is well-defined; moreover,
this multiplication makes H a group.

PROPOSITION 1.4. The mapping H—> (?, given by σ—*g£(σ), where
σ € G(I), is a group isomorphism.

Proof. Define hz: G(I) —> H by putting hz(σ) = σ. The A/ are then
group morphisms compatible with the inclusions G(Γ, I) for / ^ /';
hence, there is a unique group morphism h: G—> H such that gzh =
fe7 for all /G JP7. Next, define #: £Γ—• G by putting (̂σ) = gz(σ) if
ire G(J). To see that g is well-defined, let σ = τ, where σe G(Γ) and
τeG(Γ), and choose I^Γ, Γ. Then
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i = [G(Γf /)(σ)

= [G(Γ,

This shows that the diagram:

A • >A

A/I—μ—

is commutative, where μ = G(Γ, I)(σ)G(I", I)(τ~ι). But α7 is surjective,
so we conclude that μ — 1, and so G(Γ, I)(σ) — G(I", I)(τ), proving
that gΣ,(σ) = gΣ(G(Γ, I)(σ)) = gr(G(I", J)(r» = gΓ,(τ) as required.

A similar argument shows that g is a group morphism. Finally,
let σ G G(/), then h(g(σ)) = h(gΣ(σ)) = fe7(cj) = σ. On the other hand,
each element α; of G has the form 07(σ) for some IeF, since F is a
filter basis. It follows that g(h(x)) = gh(gΣ(σ)) = g(hΣ{σ)) = g(σ) =
gΣ((r) = x. Thus, we have the group identities \ — gh and 1 — hg
showing that ^ is a group isomorphism.

PROPOSITION 1.5. If (A, F, G) is an extension of k such that for
each IeF, the fixed ring of G(I) is k/k ΓΊ J, then the fixed ring of G
is A.

Proof We have already observed that G(I) ^ AutokncrιI(A/I)
implies that the elements of G are A-automorphisms of A. Now
suppose a e A belongs to the fixed ring of G. Then we have com-
mutative diagram:

kJUk[a]-^->A-^A

kι \aτ \ aΣ

k/k Π I • A/I.1-+ A/I

where ρJf u and i; are the canonical inclusions and uv = p:k—+ A is
the limit of the morphisms pl9 and where σ e G(I). k[a] has the
topology induced by v, so all the morphisms are continuous. By
hypothesis, vaΣσ — vaaτ — vaIf so that vaΣ factors through the fixed
ring of (?(/), namely k/k Π /. Let the factorization be va,i = WχPΣ.
For / <£ Γ in JP, we have wΣkΣ,pΣ, = wrf^, = va^, = vα7/ = W///07/
and since pΣ, is monic, w7Λ7, = wΓ. Thus, we obtain a family (w^Ie F
compatible with the morphisms k\,\ k/k Π J—> A/A Π Γ. Passing to the
limit, we obtain a commutative diagram
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k[a] W—> ίc

k[a] -1—* k/k n /

for each IeF. w is continuous, and vaz — wtfx — wkjPj = w{uv)aI

for each IeF, so passing to the limit again, v = (wu)v. But v is
monic, so we conclude that 1 = wu showing that u is surjective.
Since u is already injective, u is an isomorphism and we conclude
that αefc as desired.

THEOREM 1.6. Let {A, F, G) be an extension of k such that for
each IeF, the fixed ring of G(l) is k/k Π I. Then the following state-
ments are equivalent.

(0) (A, F, G) is a quasi-Galois extension of k.
(1) For each σ e G\l and each open, maximal ideal m < A, there

is -xe A with x — σ(x) 0 m.
In addition, if Ie F implies that A/1 is connected, (0) and (1)

are equivalent to a third condition.
(2) A is a quasi-separable k-algebra, i.e., IeF implies A/I is

a separable k/k f] I — algebra.

Proof. Consider the diagram

A * >A

where ί is the canonical limit morphism, and α7 and ax are the quo-
tient maps. Let m < A be an open, maximal ideal and let σe G\l.
We may suppose Ie F is such that m Ξ> ker (α7) and σ = g^σ). Since
i'^m) is an open, maximal ideal of A, ^/(^"^m)) is a maximal ideal of A/I,
and σ e G\l shows that there is a e A/1 such that a — σ(a) $ αjίi'Xm)),
assuming (0), by (0.2). Suppose ye A is such that a^y) = a, then
%) - σi(y) & m; otherwise, a7i(y) - a^iiy) = az(y) - oa^y) e αj(m) =
a^i"1^)) contrary to our choice of a^y) = a. Thus, i(y) — σi(y) $ m
as desired.

Now suppose m is a maximal ideal of A/1 and let a e G(I)\1. Then
aγ(m) is an open, maximal ideal of A, and g^σ) — σe G\l. We obtain,
therefore, xe A with x — σ(x) £ ajXm). It follows that az(x) — aΣσ(x) =
a^x) — σa^x) $ m showing that A/I is a Galois extension of k/k Π /
with Galois group G(ϊ) by (0.2).

If, in addition, IeF implies that A/I is connected, and (0) holds,
then by definition A is a quasi-separable fc-algebra. The converse
implication follows from (0.2).
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COROLLARY 1.7. Suppose (A, F, G) is an extension ofk such that
for each Ie F, the fixed ring of G(I) is k/k Π I. If the condition (*)
below holds, then {A, F, G) is a quasi-Galois extension of k.

( * ) For each fc-algebra B and each pair of continuous fc-algebra
morphisms f,g:Ά-^ B, there is a unique σe G such that g = σf.

Proof. Let σeG\l and let m < A be an open, maximal ideal.
If a — σ(a) e m for all ae A, then the two fc-algebra morphisms
q: A —> A/m and σq agree on A, so by (*) we must have that σ — 1
which is a contradiction. We conclude that there is aeA with
α —σ(α)£m, and so by (1.6) {A, F, G) is a quasi-Galois extension
of k.

DEFINITION 1.8. Let (A, F, G) be an extension of k. For each
subgroup H of G let r(H) denote the pointwise fixed ring of H and
let HΣ\ ~ g7ι{H). For each £-subalgebra B of A let #(JB) denote the
subgroup of G fixing B elementwise.

For I ^ Γ in F we then have a commutative diagram:

H A — > G

9i

-'—+0(1)

G{Γ, I)

- G{Γ)

where hy hj9 and hv are the canonical inclusions, and J 7 and J\, are
the monomorphisms induced by gΣ and G(Γ, I) respectively.

PROPOSITION 1.9. The colimit of the family (HI} Jj,) is H with
the colimit morphisms being the J 7 .

Proof. We have just observed the compatibility of the family
of morphisms Jt with the mappings J\, for I <£ /' in F, and it remains
to establish their universality. Let x{. HΣ —> X be any family of group
morphisms compatible with the mappings JT

Γ{I ^ Γ in F). Define
x: H—+X by putting x(σ): = a?7(α), if 07(σ) = σ. If gP(σ') = σ also,
choose Γ g /, /' so that Ji"(σ) - e/ί:'(σ'). Then Xj(σ) = ^/(/i'X^)) =
Λ?///(e7//'(σ')) = £z,(σ') shows that α; is a group morphism, and the equality
JjX — Xl for Ie F shows that x is uniquely determined. Hence, J/. Hτ —>
ίZ" is a colimit for (ίί7, Jf,).

Next, let H be a subgroup of G, and obtain the diagram:
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r{H) a > A

Cϊj

-> Ajl > All

T1 n1 n1

r(HΓ) - —-> A/Γ > A/Γ

which is commutative, where α, aIf aΓ are inclusions providing their
respective domains with the induced topology. For each σ e HIy aaΣσ ~
aσaj = aaJf so that αz factors through r{Hj), defining rz. Then aaτ —
rjaz for all IeF. Similarly, if I ^ Γ in F, and σfeG{Γ) and σ =
(?(/', /)(σr), then a^^a1 = aLaτ

L,, so that a\, factors through τ{HIf),
defining r],. Then r\,ar = α^αί,. Still using the above diagram, we
obtain from the equality τΓaΓ = r^ar the relation rr, = rzrj, since
aΓ is monic. This shows that the mapping rz: r(ίf) —> r(iίz) are com-
patible with the mapping (rz,)I <J J' in î 7.

PROPOSITION 1.10. The mappings rz: r(H) —> r(ίfj) /orm α ϊimΐί
/or ί/ie family (r(Hz), rτ

Γ).

Proof. Let xΣ: X—*r(Hi) be any family of continuous ring mor-
phisms compatible with the rΓ

Γ. Composing this family coordinatewise
with the family (aI)IeF, we obtain a family (xIaI)IeF compatible
with the canonical quotient maps aτ

Γ. Hence, there is a unique con-
tinuous mapping x: X—* A such that xaΣ = xzαz for each IeF. Now
let σ e H, say σ = gΓ(σ) for some Γ e F. For all I ^ Γ in F, xσaΣ —
xazG(Γ9 I)(σ) = XjajGtf', I)(σ) = Xj(Xj = xaL since G(Γ, I)(σ)eHj. This
being true for all small IeF, passing to the limit, we have xσ = x,
showing that x must factor through r(H). Let x = ya for some
y: X—>r{H). y is then unique, since a is monic, and ?/rzαz = τ/ααz =
x^i implies that yrI — xτ since aL is monic. This completes the proof.

REMARK. The topology induced by a on r(H) coincides with
the limit topology for ker (rz) = ker (rzαz) — ker (<roz). For the re-
mainder of this section we assume (A, F, G) is a quasi-Galois exten-
sion of k.

For each subgroup H of G we are led to a commutative diagram:

r(jff) = = r(H) " > A * > A

\aj la,![-
. T Tv Till / TT \ a i Λ Π

r(H)j > r(Hj) • A/1
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where r{H) is the image of aaΣ and r(ίί) z ^ rill^, since σ e HΣ implies
e&Ίσ = e7α7, where e7α7 is the canonical factorization of α7 through
r(ίί)7. Since e7 is surjective, aΊσ = aΊ shows that r(iί)7 ^ r(Hj), say
m7: r(ff)7 —» r(iJ7) so that α7 = m7α7. Since α7 is monic and e7m7α7 =
r7α:7, e7m7 = r7, so the first square is commutative.

It follows immediately from the definitions that H «g gr(H) for
each subgroup H of G.

LEMMA 1.11. Suppose H ^ G satisfies the condition Ie F—> Hj —
g[r(H)j], where g is appropriately defined. Then gr(H) = H.

Proof. Of course, by g[r(H)j] we mean the set

{σ e G(I) I x e r(H)z > σ(x) = x] .

Let σ e gr(H) and suppose g^σ) = σ. Then the equality m7α7σ = m7α7

shows that σ e #[r(iϊ)7] = Hz by hypothesis; hence σ = g^σ) e H.

DEFINITION 1.12. Call a ά-subalgebra B of A G-strong if for each
Ie F, Bj is a G(/)-strong subalgebra of A/1.

LEMMA 1.13. Let H rg G. The following statements are equi-
valent:

1.14. (0) IeF ^riH)! = r(JHj), i.e., r7 is surjective.
(1) Ie F—> Hr ~ g[r(H)j] and r(H) is a G-strong separable k-

subalgebra of A.

Proof. Suppose (0), then since {A, F, G) is a quasi-Galois extension
of k, r(JT)7 = r(.£Γi) shows that r(iί7) is a G(J)-strong separable k/k Π
/-subalgebra of A// for Ie F. r(H) is a closed fc-subalgebra of the
complete separated ring A, i.e., is complete. Finally, HΣ = gr(Hτ) —
g[r(H)j] by (0) and (0.5). Conversely, if (1) holds, then

r{Hj) — rg[r(H)z] = r(ίί) 7

since r(H) is a G-strong quasi-separable fc-subalgebra of A and rg ==
1 by (0.5).

COROLLARY 1.15. If H^G satisfies (1.14), #r(£Γ) = iϊ.

Now let B be a complete fc-subalgebra of A and put H =
We obtain the following supplement to the last diagram

B β > r(H)

-I1-^ r{H)l
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for each Ie F. For evidently B ^ rg(B) = r(H).

LEMMA 1.16. Suppose B is a complete k-subalgebra of A satisfying
the condition.

1.17. IeF-+Bz =
Then B is a G-strong quasi-separable k-subalgebra of A, rg(B) = JS,
and g(B) satisfies Condition 1.14.

Proof. Since i?7 = r[g(B)τ] is the fixed ring of a subgroup of G{I),
it follows from (0.5) that J57 is a G(i>strong separable k/k Π I-sub-
algebra of A/1, proving our first assertion. Next, we have the
equalities:

B = lim Bx = lim MrfB),]) - r(lπn [</(£),]) = rflf(S)

by (1.9) and (1.10). Using this fact, we obtain [rg(B)]τ = Bx

showing that (1.14) holds for

REMARK. It H <^G satisfies Condition 1.14, then r{H) satisfies
Condition 1.17 for r{H)x = r{Hx) = r[(flrr(£O)J since H= gr(H).

THEOREM 1.18. Let (A, F, G) be a quasi-Galois extension of k.
Then the pair of maps {g, r) is a Galois correspondence between the
set of all complete k-subalgebras of A satisfying Condition 1.17 and
the set of all subgroups of G satisfying Condition 1.14.

Proof. We need only observe that gr = 1 and rg = 1 are valid
equations when restricted to the sets mentioned in the statement of
the theorem.

PROPOSITION 1.19. Suppose H is normal subgroup of G satisfying
Condition 1.14. Then for each Ie F, Hτ is a normal subgroup ofG(I).

Proof. Form the diagram:

r{H) > r(H) «__> A * _ i

r(H)i _ J 5 i _ r(H)l _ _ « ! _

Our hypotheses on H show that r7 is surjective. Now let σ e G(I)
and he Ή.τ. Then rIaIσ~ιhσ — aiσ'^ίiσaj; = aaτ = rjaI9 since

{σ~ThσeH.



A GALOIS THEORY FOR LINEAR TOPOLOGICAL RINGS 99

However, r7 is surjective, so a^^ha = aI9 and we conclude that
σ~ιhσ 6 Ή.J since gτ(Hj) = iϊ7. Hence, Hτ is a normal subgroup of G(I).

Consider the following diagram of groups:

0 ,H * — G «—. G/B . o

I- l I'
G ' ° G ' l0 > H' > G' ° > G'lH'

where the rows are exact, r and s are monomorphisms, while t is the
unique group morphism making the right square commutative.

LEMMA 1.20. If (H\ r, hr) is a pullback for h and s, then t is a
monomorphism.

Proof Let t{xr) = 1, then g'(y') = xr for some yψ e G', and so
9s(ye) = 1. Hence h(z) — s(y') for some zeH. But since H' is a
pullback, there is z' e Hr such that r(zr) = z and h'(zf) — yr. Therefore,
1 = g'hf{z') = g'{y') = %', and we conclude that ί is a monomorphism.

Now suppose H is a normal subgroup of G satisfying condition
(1.14). For each I ^ Γ in F we are led to a commutative diagram
of groups:

0 > H l _ ? i _

0 > Hi -- >G(Γ) I- » G(Γ)/Hj > 0

where g7 and qΓ are the canonical quotient maps, and G/H(F, I) is
the map produced by the remainder making the whole diagram com-
mutative with exact rows. Since J\, and G(I', I) are monic, while
HJf is a pullback, it follows from our foregoing Lemma that G/H(Γ, I)
is also a monomorphism.

Thus, we obtain a contravariant monic valued functor G/H: F—>
Cr such that IeF implies that G/H(I) = G(I)/Hχ is the Galois group
of r(£Γ7) over k/k Π I by (0.5). Finally, the diagram

G/H(F,I)(δ)
r(HΣ) >

, r(HΓ)

is commutative for each σeG/H(Γ). For if 5 = #/>(#")> then G/H(Γ,
I)(σ) — qj(G(Γ9 I)(σ)) and the corresponding diagram
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A/1 > A/1

A/Γ ί > A/Γ

is commutative.
This establishes the corollary below.

COROLLARY 1.21. Let A be a separated and complete linear
topological k-algebra. Suppose (A, F, G) is a quasi-Galois extension
of k, and suppose H is a normal subgroup of G satisfying condition
(1.14). Then there is a final subset Fr of F such that (r(H), Ff Π r{H),
G/H) is a quasi-Galois extension of k9 where

Ff Π r(H) = {/' Π r(H) | /' e F'} .

Proof. Define Ff to be the smallest subset of F such that for
each intersection r(H) Π / with Ie F, there is Γ e Fr with r(H) Π Γ =
r(H) Π /. Because r(H) has the induced topology, Ff is final in %f(r(H))
and our foregoing constructions show that (r(H), F' Π r(H), G/H) is
a quasi-Galois extension of k.

2. Examples* In this section we will show how to construct a
number of examples of the foregoing material. Two lemmata are
useful in this direction.

LEMMA 2.1. Let X and Y= {Yi)ι^I be distinct indeterminants
over the ring A. Let fe A[X] be a monic polynomial, and suppose
I ^ (A[X]/(f))[Y] is an ideal. Let Γ be the ideal generated by the
image of I in A[X, Y] under the canonical inclusion A[X]/(f) c A[X,
Y]. Then we have (A[X]/(f))[Y]/I ~ A[X, Y]/(fA[Xf Y] + Γ).

Proof We have a commutative diagram:

0 >fA[X]®AA[Y\ >A[X]®AA[Y]
(/)

0 > fA[X, Y] > A[X, Y]
is

with exact rows. Hence, ker(α) = fA[X, Y], If /S is the quotient
mapping (A[X]/(f))[Y] - (A[X]/(f))[Y]/I and βa{P) - 0, then a(P)e
I, so there is Qe Γ such that a(P)eΓ + fA[X, Y]. Evidently, this
latter ideal is contained in ker {aβ), completing the proof.
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LEMMA 2.2. Suppose I ^ k[Xu , Xn] Q k[X], X = (X,)^. Then
I + k[X] <XΛ+1, Xn+2, .. •»

Proo/. Let /b[X] — £[XX, •••, XJ — k[Xly . . . , XJ/J be the
composition of the evaluation at the point (Xlf X2, , Xn, Xn, 0,0, )
followed by the canonical quotient morphism ψ. Clearly, k[X] / +
k[X] (Xn+1, •••> is contained in the kernel of the surjection Φψ; if
f{Φ{f)) = 0, then / = (/ - Φ(f)) + Φ(f) e k[X] shows that

fek[X]I+ k[X]-<Xn+ι, . . . > .

1. Example of a quasi-Galois extension. Suppose AQ is a com-
plete Noetherian local ring with residual field k0. Let k0 < fcx <
be a tower of finite Galois field extensions of k0 with corresponding
Galois groups G{kilkQ).

Since kt is a finite Galois extension of k0, we can find a monic
polynomial f1 e A0[XJ such that A0[-3Γi]/(/i) = Alf where Λ is the reduc-
tion of fx modulo j(A0), the Jacobson radical of Ao. Following [8] p.
63 we see that Aι = ^[XJ/ί/O is a complete Noetherian local ring
which is an A0-algebra of finite type; moreover, Ax is a Galois extension
of Ao with Galois group isomorphic to G(kjko) in the sense of [3].

Since k2 is a finite Galois extension of ku we repeat the above
construction obtaining a monic polynomial f2e Aj[X2] such that A2: =
AJXgj/ί/a) is a Galois extension of Ax with Galois group G{k2jk^).

We have the ring inclusions Ao ^ Λ[^]/(/i) ^ (AK]/(/i))[X2]/(/2).
Since fx is monic, we can view f2e AQ[Xίf X2] and apply Lemma 2.*
to obtain the isomorphism:

i] \X]I( f ) ~ ^ o[Xiι Xύ _ A[Xi, X2]

~ /ΛίXΊ ay + / Λ K , X2] <Λ, /o>

I t e r a t i n g t h e above, w e o b t a i n An+1 ~ A0[Xlf , Xn+1]/ <fu , f n + 1 )
a n d h a v e t h a t ^4%+1 is a finite Galois e x t e n s i o n of An w i t h Galois g r o u p
G(kn+1/kn); An+1 is also a finite Galois e x t e n s i o n of Ao w i t h Galois g r o u p
G(kn+1/d0).

N o w define ideals In ^ B: = A0[Xlf X2, •] as follows:

1, X. + 2 , •> for n ^ l .

L E M M A 2.3. (1) In ^ I

( 2 )
( 3 )

n+1.

Proof. (1): Since / Λ + 1 e Λ [ - X Ί , , -Xn+J c J5, i t follows t h a t
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Bfn+ι c In so that In ^ In+1.
(2): Is clear.
(3): Follows from Lemma (2.2).
Let U(B) have as filter basis the family (In)n>i. Then for In ^

In+1, we have a commutative diagram

Cn+ι/fC0)

I I
Λ > An^ B/In: G(kn/k0)

where At is a Galois extension of AQ with group G(kJkQ)(i = n, n + 1).
By (1.1) there is a group morphism G(kn/k0)—>G(kn+ί/k0) which is
injective and satisfies the commutativity criterion of (1.1).

Letting F = (In)n^ and G:F->Gr be such that G(IW) = G(fcH/fc0)
we obtain a quasi-Galois extension (B, F, G) of Λ>.

2. Another quasi-Galois extention. Let Jζ, < 1^ < be a
tower of Galois field extensions (all finite), Kn+ί is a finite Galois
extension of Kn, so jKΓn+1 = Kn[Xn+ι]/(fn+ι) for a monic polynomial /Λ+1,
and repeating the technique of 1, we get for A = if0K, ^i, # •] and
ί7 = (/W)ΛS1, ZM appropriately defined, that A//% = iΓ% so that finally (A,
Ff G) is a quasi-Galois extension of KQ with G(/π) = G(Kn/K0).

REMARK. In 1 each term B/In is a local ring, while in 2 each
term A/In is an integral domain. These are two general classes of
connected rings. Later we will give an example of a quasi-Galois
extension where the approximating terms are not connected, i.e., have
proper idempotents.

3. Quasi-Galois extensions in rings of continuous functions.
This example is fairly complicated, so / first state the results. Let
(Xi)ieI be a cofiltered family of topological spaces such that i ^j in
I implies xiά\ Xt —> X, is an inclusion for which the identity

holds. Let X = linij Xi9 and let #*: Xt —> X be the colimit morphisms.
Then the xτ are injective.

Next, let C: Top —* RIN be the functor assigning to each top-
ological space X, the ring of continuous real valued functions with
domain X, where Top denotes the category of topological spaces.

LEMMA 2.4. C(X) ~ lim7 C(Xt) via / — (^/) i e / .

Now suppose {G%)iBI is a cofiltered family of groups such that
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i ^ j implies g^: Gt —> G3 is the monomorphism, and let G = limz Gt

with gi:Gι—*G being the canonical colimit morphisms. The gt are
injective. We will suppose that Gt acts continuously on Xi9 Gt: Xt —*
Xu in such a way that for i <£ j in I we have a commutative diagram
for all σ e G%:

X, x" Xj .

LEMMA 2.5. G αcίs continuously on X, and if geG, there is le
I for which gt{o) — g and the diagram below is commutative:

χx ίi_>χ

A2 >χ

Due to the foregoing assumptions we obtain commutative diagrams:

Xi — • Xj C(Xj/Gj) •

and

XJGt χι, Xs/G, CiXJGt) > C(XX)

for i ^ j in /, where Xi/Gτ is the space of (-^-orbits of Xt with the
quotient topology, while qx is the canonical quotient morphism. A
more general result than (2.4) is the following:

LEMMA 2.6. C(X/G) ~ limf CiX./G,) via f -> (fi)ιeI, where qj, =

x,qf and q:X—>X/G is the quotient map.

Finally, suppose the following conditions are fulfilled.
(a) Each Xi is compact.
(b) Gil Xi —> Xi is a finite group without fixed points.
(c) Both C(X)-+C(Xi) and C(X/G) -> C(X,/(?0 are surjective.

Then:

(0 ) ker [C(X) — C(Xτ)] n C(X/G) = ker [C(X/G) — CiXJG,)].

(1) (C(X), F, H) is a quasi-Galois extension of C(X/G), where

F = (ker [C(X) - C(Xt)])teI and iϊ(ker [C(X) — C(Xt)]) - G,.

Proof. Draw the diagram:
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X, X—> X . ί >R

Qi \Q

XJGt --—> X/G 7—> R

and assume xtf = 0 and qf = / . Then qιxif ~ 0 implies xj — 0
which implies / e ker [C(X/G) -> C(XJGt)]. Conversely, xj = 0 implies
xtqf = 0 and qf: = fe C(X/G) Π ker [C(X) -> C(Xt)] which completes
the proof of (0).

For (1), it follows that for each i e 1 the diagram

C(X/G) • C(X)

C{X<IG%) > C{XX)

is commutative. iί(ker [C(X)-> C(Xt)]) = Gt acts on C{X%) by the
formula σf(x) = f(o(x)) for all x e Xt and σ eGt. Since Xt is compact
and G% acts without fixed points, it follows from (0.2), (2), that C(X,)—>
C(XJ is a Galois extension with group Gτ. Moreover, we have for
i ^ j in /, a commutative diagram

C(X<) - ^ ^ dX,): G< C(σ)

since the corresponding diagram omitting the C's is commutative.
Letting U(C{X)) have as filter basis the family F = (ker [C(X) —

/ we see that (C(X), H, F) is a quasi-Galois extension of

As example of such a situation as described above, let, for each
n*zl,Xn be the topological coproduct of 3n copies of [0, 1], and let
Gn the cyclic group of order T acting on Xn by permuting the sum-
mands. Gn acts continuously and has no fixed points, while Xn is
compact. We have l i m ^ Gn = Z(3°°) and limwέl Xn is simply the copro-
duct of a countable number of copies of [0, 1], where we interpret
always Xn ^ Xn+i and Gn ^ Gn+1. It is clear that the diagrams following
(2.4) and (2.5) are commutative, and that the conditions (a)-(c) are
fulfilled in this case.

We will now prove assertions (2.4), (2.5), and (2.6).

LEMMA 2.4. C(X) ~ limz C(Xt).

Proof. For each i ^ j in /, we have by definition a commutative
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diagram:

Xj

Xi —Xi—> X .

If (/i)te/€ lim C(Xi), then for i ^ j we have a diagram

1"
so there is a unique f:X—>R such that Xif = fi for i e / . This
shows that f —+(Xif)iBF is bijective, and the uniqueness guarantees
that this mapping is a ring morphism.

LEMMA 2.5. G αcίs continuously on X.

Proof. G is formed by taking colimits of diagrams like:

x t

 XiS >x,
\σ

where j ^ i for all σ e G(i). This leads to commutative diagrams:

I'
X, -L—»• Xj

where g = lim^^ ̂ i(cr). It follows immediately that x^g^iO) e Top (X3)
for all i ^ i and all 0 e Top (X); moreover, if k e I, let j ^ i, k, then
^ r X O ) - xjfaj'g-We Top(X,) - X^(Top(X,)) by definition of

Hence, βr is continuous.

LEMMA 2.6. C(X/G) ~ lim7 C(X,/(?0 via / - (ά,/),,,.

Proof. Let 7/̂ : -X̂ /G* —> F be such that x^y,- — yt for i t^j in /.
Then composing qt: Xt —> X̂ /Ĝ  with ̂  yields a family {qty^iBI compatible
with the Xiji Xi—>Xj for i ^j. Hence, there is a unique y: X—> 3Γ



106 B. L. ELKINS

such that xty = g ^ for ie I by (2.4). Next, let geG, say # = g^σ)
for <τ e G(i). We then have the equations: x3 gy — gi3(p)x3y = x3 y since
y is constant on Grorbits of Xh i.e., xάy — Qjy3 . Passing to the colimit
over j ^ i, we get gy = y showing that y is constant on G-orbits of
X. Hence, there is a unique y: X/G —> Y such that y = qy. Since
#i is surjective and qiyi = xτy = x%qy = q%xy, we conclude that y% =
xty for all i e / . Thus, the mapping f —+ (%if)iei is bijective and as
before the uniqueness assures that it is a ring morphism.

4. A non-connected quasί-Galois extension. Let (A, F, G) be a
quasi-Galois extension of k and let w >̂ 2. Put AΛ — Aπ 7rA (n
factors) and Fin) = {In\IeF}. The diagonal mapΔ\ k —> A% makes A
a ά-algebra, and J e ί 7 implies An/In ~ (A//)%. Moreover, / ^ / ' in F
induces (aτ

Γ): (A/I)n —> (A/Γ)n which is surjective. It follows from
[2] (Chapter IX §7, Prop. 7.3) by induction that (A/If is a separable
yfcj-algebra via the diagonal map Δτ\ kT —> (A/I)n, where kτ = k/k f] I.

Next, let Gn(I) - G(I)π - - - πG(I) (n factors) and let H(I) denote
the diagonal subgroup of Gn(I), that is the image of the diagonal
mapzί: G(I)-*Gn(I). Gn(I) acts componentwise on (A/I)n. Let Hbe
any subgroup of the symmetric group of n letters which moves all
the letters to all positions, e.g., the cyclic group of order n. We
think of H as acting on each (A/I)n as a permutation of the factors.
Finally, let K(I) be the normal product of H with H(I), so that each
element of K(I) may be put in the form πA{σ) with πe H and σe

LEMMA 2.7. (a) K{I) acts on (A/I)n with fixed ring Δj{k\k Π I)
for IeF.

(b) {Ajl)n is a Galois extension of k/k f] I with group K(I) for
IeF.

Proof. It is clear how K(I) acts on (A/I)n using the represen-
tation of elements of K(I) in the form πΔ{σ). If (alf •••, an) is fixed
by K(I)y then because K(I) moves each component to every other
component, and each component lies in k/k n / l, we must have that
the element (αx, , an)e A^k/k π I), proving (a).

Next, let (xx), (yt) be two families of elements of A/I such that
ΣΐS* σ(yτ) = δlσ for all σ e G(I). Such exist by (0.2), (1). Then we have
Σi Λ(«i)^(^)(Λ(2/i)) = JiϊΣiWiVi)) = 4i(δlσ) = 3U{σ) = δlκA[σ); hence, (b)
holds using (0.2), (1), again.

There is an evident group morphism K{Γ) —> K{I) extending G(Γ) —>
G(I) which is monic. We denote the so generated functor by K: F{n) —>
G, and obtain a quasi-Galois extension (An

y F[n\ K) of k such that
(A/I)n is not connected.
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