Pacific Journal of

Mathematics

A PROBLEM IN COMPACT LIE GROUPS AND FRAMED
COBORDISM

HILLEL HALKIN GERSHENSON




PACIFIC JOURNAL OF MATHEMATICS
Vol. 51, No. 1, 1974

A PROBLEM IN COMPACT LIE GROUPS AND
FRAMED COBORDISM
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Given a compact, connected, k-dimensional, oriented Lie
group G or a faithful orthogonal representation 7 of such a
G there arises an element of the kth framed cobordism group
2{". The study of these elements is begun, and some alge-
braic properties of the situation are discussed. The remain-
ing problem is to relate such properties of the elements in
2{" as order or Adams d and ¢ invariants to Lie theory.

If G is a k-dimensional Lie group its tangent bundle may be
trivialized by choosing a linear isomorphism of its Lie algebra (G)
with Euclidean space R*, and using right multiplication to give an
isomorphism of the tangent space at any point with the tangent space
at the identity which is, of course, the Lie algebra. If GG is compact
and oriented every trivialization of the tangent bundle gives rise to
a trivialization of the stable normal bundle (see the discussion of
tangential and normal structures on p. 23 of [2]) and hence to an
element of the kth framed cobordism group 24{". If two choices of
linear isomorphisms of &~(G) with RF* differ by an element of GL,(R)
of positive determinant it is easily seen that the corresponding tan-
gential trivializations are homotopic through trivializations and hence
determine the same element of 2[". Thus, a compact, oriented k-dimen-
sional Lie group G gives rise to a well-defined element [G]e 2/".

Now assume in addition that G is connected and let T G — SO(n)
be a faithful representation of G. 7T embeds G in Euclidean n’-space.
If G is k-dimensional then & < n(n — 1)/2 < n*/2, since dimG <
dim SO(»), so that codim G > k and the normal bundle of G in this
embedding is already stable. We shall always assume a fixed orienta-
tion in any Eueclidean space we discuss; in particular view Euclidean
ni-space as M(n), the space of % X n real matrices and choose an
orthonormal basis e;;, 1 < 1, j < n, where ¢;; is the matrix with one
in the 4jth position and zeroes elsewhere. Orient M(n) by putting
the ¢;; in lexicographic order, so that the ordered basis ise,, ¢, -+,
iny €1, ** %y €ony ** %, €y, *t, €nne  Make the convention that M(n) is
always oriented this way, and also assume that the matrix of any
linear transformation from M(n) to itself is always written with
respect to this ordered basis.

Returning to the faithful representation T, choose an orthonormal
basis 7, -+, 7, for 7, the tangent k-plane to 7(G) at the identity I.
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Then choose an orthonormal basis v, ---, v,._, for 7; in such a way
that the basis 7, ---, T4, V), - -+, V.2, determines the fixed orientation
of M(n).

Since G (identified with 7(G)) is contained in SO(n), right multi-
plication of elements of M(n) by an element ge G defines an element
P, in SO(n?. Since p, is a diffeomorphism of G and dp,, the dif-
ferential of p, (viewed as a map p,: M(n)— M(n)) is a constant ele-
ment of SO(n®), dp, maps the tangent (resp. normal) space at I to
the tangent (resp. normal) space at g. Define v(g) = do,(v;), and
observe that this defines a framing of the stable normal bundle of
G, v(G), and thus an element [T]e Q%. Observe also that 7,(g) =
do,7;) defines a framing of 7(G) which coincides with the framing
discussed above in connection with the element [G].

The object of this note is to begin the study of the elements [G]
and [T]. It is first shown that the element [7T'] does not depend on
the choice of framing at I, and the question of the dependence of
[T} on the equivalence class of T as representation is then discussed.
The algebraic properties of the map 7T+ [T] are considered. The
following statements are proved by example:

(A) If S and T are two faithful representations of G, [S + T] #
[S] + [T] in general.

(B) If T+ m is the representation obtained by adding m trivial
representations to 7', then in general [T + m] = [T].

Some positive statements may be made, however,

b

ProposiTioN 1. If T.:G,— SO, and T, G,— SO(n,) are two
Saithful representations of two compact, connected, oriented Lie groups
of dimensions k, and k, respectively, and T, P T.: G, X G,— SO(n, + n,)
18 thetr exterior direct sum, then [T, T,] = (—1)[T, + n][T, + n.],
where e = kyn, + k, + n,m,) and the product on the right ts taken in
the framed cobordism ring Q7.

PRrOPOSITION 2. Let T:G— SO(n) be a faithful representation of
a compact, connected k-dimensional Lie group.

() The sequence [T], [T + 1], ---, [T + m], --+ of elements of
2 is cyclic in m.

(b) The element [G] occurs in the sequence of (a).

(¢) If r, s are positive integers then [rT + s] occurs in the se-
quence of (a); in fact, [rT + s] = [T + (»¥* — 1)n + s].

The problems that remain open may be summarized as: How do
the Lie-theoretic properties of G and T affect the elements [G] and
[T]? We list two such problems: What conditions on G and T allow
one to conclude that [G] = 0 or [T] = 0? Express the numbers that
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occur-such numbers as the orders of [G] and [T], the primes that
occur in those orders, the Adams d and e invariants of [G] and [T],
the length of the cycle of Proposition (2¢) in terms of Lie theory.

Before proceeding to the proofs of the statements above, it is
useful to make the matrix form of dp, explicit. Since p, is a linear
map of M{n) to itself, dp, is constant and dp, = p,. If x = (;;) € M(n)
g = (9un) € T(G), then p,(x) = (¥.), where y,, = >, £,,0,. Setting o =
e;; and looking at the formula proves Lemma 1.

LemMMA 1. As a matriz in SO(n?), dp, is obtained by stringing
% copies of ¢ = g~ down the diagonal.

LEMMA 2. In Qf7, [T] is independent of choice of basis t, ---,
T, (resp. v, +--, v, ) of tangent (resp. mormal) space at the identity.

Proof. Let 7|, .-+, 7}, V), -+, v, be another choice of ortho-
normal, properly oriented bases of 7; and 7 = v, respectively. Define
Le S0 by L(t;) = i and L(v;) = ;. L is in that subgroup H of
SO(n?) which keeps 7; and y; invariant, so that H is isomorphic to
SO(k) x SO(n® — k). Let o be a smooth path in H from L to the
identity. Then, for 0 < ¢ <1 and ge T(GQ), v{9): = (do,)Xo(t)v;)) de-
fines a homotopy of one normal framing to the other through normal
framings, so the two framings represent the same element of Qf"
(see, e.g., p. 190 of [1]).

Note that it is important to maintain orientation; if the orienta-
tion is changed the sign of [T'] changes. It is also easy to see that
if G is not connected but has, say, ¢ > 1 components, and if each
component G, is identified with G,, the component of the identity,
by right multiplication by a fixed ¢3!, g.€ G., and if T:G— O(n) is
a faithful representation and T, = T |G, then »(G) may be framed
as before, and in this case [T] = ¢[T,]. The nonconnected case will
not be explicitly considered further, although much of the discussion
below remains valid in that case.

DEFINITION. Let S and T be two (not necessarily faithful) or-
thogonal representations of the group G. S and T are centrally
equivalent means:

(i) S and T have the same rank n.

(ii) There exists Ae O(n) such that S = ATA™".

(iii) There exists Be O(n) such that det A = det B and B cen-
tralizes T(G), i.e., BT(g9) = T(g)B for all ge G.

We state some obvious observations as a lemma.
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LEMMA 3. (i) Central equivalence is an equivalence relation
which implies the usual equivalence relation.

(ii) If the rank is odd, central equivalence coincides with the
usual equivalence relation.

(iii) If S and T are centrally equivalent, so are S + 1 and T +
1; ¢f S and T are equivalent, S + 1 and T + 1 are centrally equiva-
lent.

(iv) If S and T are two representations of G, S+ T and T + S
are centrally equivalent.

(v) If S and T are equivalent unitary representions of G, their
“realifications” are centrally equivalent.

PropoSITION 3. (i) If S and T are centrally equivalent faithful
representations of the compact, oriented Lie group G, then [S] = [T].

(ii) If S and T are two faithful orthogonal representations of
G, [S+ Tl=I[T+ S].

(iii) If S and T are equivalent faithful unitary representations
of G, then [S] = [T].

Proof. Let A, Be O(n) be such that S = ATA™, det A = det B,
and B centralizes T(G). Let 0:I— O(n) be a smooth path from B
to A. Let T,:G—SO(n) be defined by T, = c(t)To(t)™, and let
G: M(n) — M(n) be defined by (M) = o(t)Mo(t)™. Observe that for
every te I, 6e SO(n?). Choose a tubular neighborhood v of T(G) and,
if xey, set », = 6,B7'xB. Note that z, = z, and Ty(g) = T(g) for all
g€ G. Choose a basis for the normal bundle of T(G) at the identity
following the orientation convention described above. Then, for te
and ge G, framing T.(G) by applying dT.(g9) to the basis chosen above
defines an isotopy of framed manifolds. Since T, = S and Lemma 2
shows that [S] can be defined using the framing defined here, it
follows that [S] = [T']. This proves (i).

The other two parts follow from (i) and Lemma 3.

A slight extension of these ideas may be useful in considering
tensor products. If T: G — SO(%) is a representation with finite kernel
of a compact, connected, oriented Lie group, then T induces a faithful
representation 7" of G’ = G/ker T, where G’ is again a compact con-
nected Lie group which inherits an orientation for G. We may define
[T] =[T]. If G is semi-simple in addition, and S and T are two
representations of G which have finite kernel, then so does S 7T,
although S® T need not be faithful even if S and T are. Thus,
[S® T] can be defined, and it can be shown as in the proof of Lemma
4 that [SRT] =[T®S]. If S and T are faithful representations
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of G (or representations with finite kernel) it would be of interest
to obtain general formulas for [S + T] and, if G is semi-simple,
[S® T], in terms of [S] and [T].

Proof of Proposition 1. Suppose T: G — SO(n) is a faithful re-
presentation, and consider T + m:G — SO(n + m). Linearly embed
M(n) in M(n + m) by the map 6:e;—e;. Then, if 7, .-- 7, and
v, +++, Y, , are properly oriented frames in 7, and v, respectively,
f(z.), -+, 0(t,) is a tangential frame of (T + m)(G) at the identity,
and 6(v,), ---, (v ,_,), €., 7 > m or s > n, with the e, in lexicographic
order, is a normal frame at the identity of (T + m)(G). These frames
do not, in general, give the proper orientation to the normal frame
according to our conventions; a computation shows that this orienta-
tion is (—1)” times the proper orientation, where f = 1/2 mn*(n — 1).
Thus, normally framing (T + m)G) by moving the given frame at I
by dp, for each ge G gives a framed manifold representing (—1)"
[T + m]. Applying Lemma 1 to the representation 7T + m shows
that, if ge G, do, fixes e,, whenever s > n. Hence, if V. M(n + m)
is the m(n + m) dimensional subspace of M(n + m) spanned by the
e.,, 8> 1, G may be viewed as embedded in V* by orthogonal projec-
tion of (7 + m)G into V*, and the normal frame at g may be taken
as do, applied to d(v,), -+, 0(v,._,)s €., 7> m, s < 7, in lexicographic
order, all of which vectors lie in V*. Identifying V' with Euclidean
n{n + m) space shows that G is now embedded in R""*™ ag a framed
manifold, and that, with this framing, G represents (—1)/[T + m].

Now consider the situation of the proposition. Let 7, --- 7, and
T, -+, Ty, be tangential frames at the identity for T\(G,) and Ty(G,)
respectively, and let corresponding normal frames be v, --- v,
and v, --+, vz ... Define 6: M(n,)— M(n, + n,) by 6(e;) = ey, and

0": M(n.) — M(n, + n;) by 0'(e,;) = €,,40,0,4¢- A tangential frame for
(T, @ T)(G, x G,) at the identity is given by 0(z)), - -, 0(z}), 0'(z}), -+ -,
0'(ty,), and a normal frame by 6(v), ---, 0(v,2_s), €. O'(V), ---,
9’(u;§_kz), €. Where n, + 1 r<n + 1,1 s n,1 5t n, n, +
14 =n, + n, and the ¢,, and ¢, are taken in lexicographic order.
View M(n, + n,) as the direct sum of two Euclidean spaces V and
W, V of dimension %%, + %,) and spanned by the ¢;; with 1 <5 <
n,, and W of dimension #%,(n, + %,) and spanned by the e;; with =, +
1< n +n, Apply Lemma 1 to the case of T, @ T,, and observe
that the action of do(g, ¢.) for any (g, ¢.)€ G, X G, gives rise to the
framing discussed above in the case of T, + n, when applied to
ow,), -+, 0(21”?_,,1), oy +1Zr<m, + 0, 1<s<n, where G, is
viewed as embedded in V, and similarly gives rise to the framing
discussed above in the case of T, + n, when G, is viewed as embedded
in W. Therefore, the framing on (T, T.)G, x G,) represents, on
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the one hand, (—1)°[T, + n.][T. + n.], ¢ = /2 n,m(n} + 0 — n, — n,),
and on the other &[T, P T.], where ¢ = +1. This sign is positive if
the orientation of the normal frame at the identity coincides with
the one determined by our orientation convention, and negative oth-
erwise. An exercise in changing bases and computing the signs of
permutations then shows that ¢ = (—1)*, where h = n,ny(nt + n,n,) +
ky(n? — k) + k.nm, + g, and the proposition follows.

CorOLLARY 1. [T\ T.) =(—1)"[T,D T,], where m = kny(n, +1)+
kn(n, + 1).

Before proving Proposition 2 some discussion and a lemma are
needed. Suppose M* is a k-dimensional stably parallelizable compact
manifold embedded in R¥ with stable normal bundle v * and that @
and + are trivializations of v *. In [1] a difference element d(®, +)
in K(M) (real K-theory) was defined. Let T: G — SO(n) be a faith-
ful representation of a compact, connected, oriented Lie group. The
tangential trivialization of G discussed above gives rise [2] to a
unique (in the sense of equivalence of trivializations [1] {2]) trivializa-
tion of the normal bundle of G for any embedding of G in a Euclidean
space of sufficiently high dimension. In particular, »n? and 2n® are
sufficiently high dimensions. Call this trivialization G. The represen-
tation T also gives rise to a trivialization of the normal bundle, as
has been described. Call this trivialization 7. As a map of G into
SO(n) < O, T represents an element of K*(G), which we call (T).

LeMmA 4. In KY(G), d(G, T) = n{(T).

Proof. The tangential framing of G is independent of 7, and
hence G, while it may be described in terms of T, will be independent
of T as trivialization of the normal bundle (see the discussion on p.
23 of [2] for the relationship between tangential and normal struc-
tures). The trivialization of the normal bundle is obtained as follows.
If M is a compact, k-dimensional, stably parallelizable manifold em-
bedded in R¥ < R¥*', where N is sufficiently large, let 7,(z), - -, 7,..(2)
be a trivialization of (M) @ 1, where at each point xe M this set of
vectors is an orthonormal basis for 7, @ R (a Riemannian structure on

M is assumed). Then a trivialization v,(z), ---, vy_,(x) of the normal
bundle of M corresponds to the given tangential trivialization precisely
when the map z — (7,(2), - -+, Tp(x), ¥i(x), - -+, Yy_s(2)), which is a map

of M into O(N + 1)< O represents zero in K (M), i.e., is null homo-
topic. If M is parallelizable, the same thing may be done in RY with
k tangent vector fields.

In our case such a framing of the normal bundle may be obtained
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by viewing Euclidean 2n*-space as M(n) @ M(n), and embedding M(x)
in it as the first summand. This embeds T(G) in M(n) @ M(n). Again,
choose a tangential framing 7, --:, 7, and a normal framing v, ---,
Y., at the identity of T(G) in M(n). In M(n)@ M(n) a tangential
framing at the identity is then given by (7, 0), ---, (z,, 0) and a
normal one by (v, 0), -+, (V,2_s, 0), (0, €;;), the e;; being taken, say in
lexicographic order. If these framings at the identity are then trans-
lated by the action of the elements

4, - (dpg )
0 (do,)

tangential and normal framings of T(G) are obtained which correspond

to each other as described above. Hence the framing of the normal

bundle is, as framing, independent of T. ]
If we translate the normal framing at the identity by the elements

in SO(2n? ,

B, = (d‘o” 0) in S0(2r?) we
0 I

obtain a framing of T(G) which represents [T]; it is just the fram-

ing already described stabilized to co-dimension 2n* — k. Take the

first framing of the normal bundle to be G and the second to be 7.

It follows from the definition of the difference element in [1] that
(G, Tye K(G) is represented by the map 6: G — SO@2n* — k) to be
described next.

Fix an ordered orthonormal basis of Euclidean (2n® — k)-space.
The fixed normal frame at the identity then defines a norm preserv-
ing monomorphism F: R**— M(n) @ M(n). Let =: M(n) @ M(n)—
R**~* be orthogonal projection on the image of F followed by F~.
Then d(g) = wA,B:F. If C, = A,Bie S0(2r%), then

Cg:(z 0)
0 (do,)/ .

It follows from the definitions of the frame at the identity and F
that ker 7 is contained in the first summand of M(n) € M(n). Since
C, is the identity map when restricted to that summand and C, sends
the second summand to itself, we see that d(G, T) is also represented
by the map g — (dp,)' € SO(n?). Lemma 4 then follows from Lemma 1.

Proof of Proposition 2. According to the theorem of [1], [T] =
[G] + P(G)T'd(G, T), where d(G, T) is projected into KG), J* is
the reduced J-morphism mapping K=(G) to SG), the reduced stable
cohomotopy group of G in degree zero (or the reduced cohomology
group of G with coefficients in the sphere spectrum), and ®(G) is a
map of SYG) to 2{" which depends only on G up to equivalence of
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framings. In KY(G), (T + k> =<{T)>. Then, by Lemma 4, d(G,
(TTR) = (0 + kXT + ky = (n + kXTS, so that d(G (mT T p)) =
(mn M% + pT> = (n + (m* — Dn + mp){T) =
dG, (T + (m* — )n + p)). Hence, [mT + p] = [T + (m* — )n + p],
which proves part (c).

Since G is connected, SYG) is a finite commutative ring unber
the product in S*(G). (Note that this is the first time that the
hypothesis of connectivity is really necessary.) In [1] it is shown
that J~: K%(G) — SYG) is a homomorphism from K~(G) to a modified
abelian group structure on S%G). Hence, Jd(G, (T/ﬁc)) = J((n +
kXT>) is the (n + k)-fold sum of an element in a finite abelian group
with itself. Therefore, as k changes, J'd(G, (T:/k)) changes cyecli-
cally, and, for some %, J'd(G, (fﬁc))zo. This proves parts (a) and (b).

Now consider statements (A) and (B), which will be proved by
example. The methods used will involve Lemma 4 and the results
of [1] as used in the proof of Proposition 3. In the examples, G will
always be S® = Sp(1l) and 7, will be the representation of Sp(l) in
SO(4) called ¢ on p. 116 of [3], which is defined by viewing qe
Sp(1) as a unit quaternion, and ¢'€ KB* as a quaternion and setting
0(¢)¢’ = q¢’. This map defines an element called B;e 7,(S0(4)) which
yields a generator of 7,(0) under the inclusion SO(4)c O [3]. The
image of B, under the J-homomorphism generates 2!, as is well-
known, and is in fact the generator usually called v. We shall not
stop to prove this here since it is not necessary; for our purposes,
we may define the generator ve Q" ~ Z,, as v = J(B,).

The proof of Proposition 1 of [1] shows that in the case where
G (or the manifold, not necessarily a group, which is considered in
that proposition) is a sphere, the map which we have called ¢(G) in
the case considered here is the identity (recall that S%(S") = 2:7) if
the orientations involved are correctly chosen. Further, in the case
of a sphere both group structures on S%S") coincide, so that the
formula used in the proof of Proposition 2 becomes

[T] = [G] + Jd(G, T),

where J': K~(S% — Q{7 is the usual J-homomorphism.
~ I~
Lemma 4 applied to this case then says that d(G, (T, + k)) =
~ ~ ~ I~

4+ EXToy. Since J KTy =v,J7'dG, (Ty+ k) =@ + k), so [T, + k] =
[G] + (4 + k)y. Therefore, [T, + k] = [T,] precisely when kv = 0, or
k = O0(mod 24). This proves statement (B). Note that the length
of the cycle of Proposition (2a) is twenty-four in this case, so that
all of 2{" is filled up, and that [T, + k] = [G] precisely when k =
—4(mod 24).
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Proposition (2¢) tells us that [mT)] = [T, + 4(m* — 1)] = [G] +
4m*. Then, [pT] = [G] + 4p%, and [mT, + pT)] = [(m + p)T,] =
[G] + 4(m + p)Yv. Therefore, [mT)] + [pT]| = [mT, + pT,] precisely
when 8mp = 0(mod 24) or mp = 0(mod 3). In particular, [T,] + [T.] =
[T, + T.], which proves statement (A). .

In these examples it should be pointed out that in fact [G] = v
if the orientation of G is picked properly, and that this orientation
can be picked so as to yield [G] = v at the same time that ®(G) is
the identity. The formulas of the last paragraphs then become

[To] = by
[T, + k] = 5B+ kw
[mT,] = (4m* + L)y .

Seeing that [G] = v involves a very tedious matrix calculation which
is not described in detail here. Briefly, by writing down the repre-
sentation T, it is seen that S® is embedded in RYc R* as the in-
tersection of the 15-sphere of radius two with a certain 4-plane.
Using this fact, a normal trivialization of T(G) can be written down
which represents zero in 2{". The difference element between this
framing and G can then be written down and, by a suitable choice
of inner automorphisms, recognized as representing the image of G,
in 7(S0(29)), and therefore as representing a generator of K'(S?).
That [G] = v then follows from an application of the theorem of [1].
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