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J. C. KIEFFER

The Shannon-McMillan Theorem of Information Theory has
been generalized by Moy and Perez. The purpose of this
paper is to give a simple proof of this generalization.

1. Introduction. Let T be either the semigroup of nonnegative
integers N or nonnegative real numbers R*. Let % = {U':te T} be
a semigroup of measurable mappings from a given measurable space
(R, ) to itself. (We suppose U® is the identity map.) If X, is a
measurable mapping from the space (2, &) to another space, let
(X,:te T) be the process generated by %; that is, X, = X,-U’, te T.
If q,beT,a < b, let F,, denote the sub-sigmafield of & generated
by the mappings {X,;:te T, a <t < b}.

Let P, Q be probability measures on .%%; let P,,(Q,,) be the re-
striction of P(Q) to .#,,. We suppose that P, is absolutely continuous
with respect to Qy, £€ T. Then the Radon-Nikodym derivatives f,, =

dP,/dQ,, exist, s<¢t. We assume that the entropies H,, =S log f,.dP,
2

s < t, are all finite. (We use natural logarithms.) It is known that
(1) H, is a nonnegative, nondecreasing function of ¢ ([6], p. 54);
and
(2) If ] -] denotes the L'(P) norm, then

HIOg(fru/fst)H é Hru - Hst + 17 r é S é t é u ,
([6], inequality (2.4.10), and p. 54).

The Moy-Perez result. The following generalization of the Shannon-
McMillan Theorem was proved by Moy [4] for the case T = N, and by
Perez [5], for the case T = R*.

THEOREM. Let (X,:te T) be a stationary process with respect to
P and a Markov process with stationary transition probabilities with
respect to Q. If the sequence (n'H,:n = 1,2, ---} s bounded above,
then the functions {t7'log fou: t > 0, t€ T} converge as t — o in L'(P)
to a function h which is invariant with respect to Z; that is, h- U* = h,
teT.

To prove this theorem, Moy and Perez embedded the process (X;)
in a bilateral process (X,: — o <t < c0), stationary with respect to
P and Markov with respect to @; Doob’s Martingale Convergence
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Theorem was then used. We present a simple proof which requires
no such embedding and no martingale theory. The method of proof
is a generalization of the method used by Gallager ([2], p. 60) to prove
the Shannon-McMillan Theorem, and uses the L' version of the Mean
Ergodic Theorem.

Proof of the Moy-Perez result. The assumptions made on P and
@ imply that:

(3) The sequence {H,,:n = 1,2, .--} is convex ([4], Theorem 2);
(A sequence ¢, ¢, --- is convex if ¢, — 2¢,4, + ¢, =0, =12, :--.)

(4) fu+U®*=fis:: a.e. [P], and therefore H, = H,,.. ([4],
Theorem 1); and

(5) EQ(frtl%s):fn;Tgsét-

Because of (8), H,, — H,,._, is an increasing sequence and so has
a limit H, possibly infinite. Since

w ' Hy,, =0t 2”3 (Hy — Ho,i~1) + n~'H,, and {}‘H()n}
i=1 n

is bounded,
limnH,, = lim(H,, — H,,,_,) = H< .

n-—roo n—co

From (1), we have
(17 Hyy[t]t™ < t7' Hy = ([t] + D7 Hyp([8] + )7

which implies that lim,..t™* H, = H.
Also, since

[[t7*1log for — [t] " Fun |l = || t7 log forn — [t]7" log fora ||
+ [ t7 log (foo/ fors) Il »

and by (2)
[|£7 1og (foe/ fuus) || = 7 (How — Hogey + 1),

we see that the convergence of n™'log f,, in L'(P) as n— - would
imply the convergence of t~'logf, in L'(P) as t— co to the same
limit.

Now, for fixed se T, we have for ¢t = s,
[ log fo. — t7'10g fi,e1: 1] < ||t log (foz/fse) I
1187108 (Furel f) | S 2 (Huy = iy + 1)

using (2) and (4). Consequently if lim,_. t™'log f,, = h, then
limé¢*log f,iee = R .

t—oo
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It follows then that & = h-U® because
lim ¢ log fy,see = lim (¢ log for)- U* = h- U,

t—> t

where we used (4).
These considerations show that it suffices to prove the L'(P)
convergence as n — co of {n7'log fo,:m =12, ---}. This we now do.
Given ¢ > 0, pick N to be a positive integer so large that
[N“H,y — H| <e¢, and | H, yy, — Hyy — H| <e. Define the sequence
of functions h,,» = N+ 1, N+ 2, ---, as follows:

n—N—1

by = fox H (fi,N+i+1/fi.N+i)I(fi,A'+i) ’

=

where for a given function f, I(f) we define to be the function such
that I(f) = 1 if £ > 0, and I(f) = 0, otherwise.
Now, using (5), we have

EQ(hn { %,fn—i) = hn——l[I(f'n—Z\'—-l,n—l)/f’rb——]\’——l,n——l]EQ(fn~—Z\’—L,n f n%,n—«l) g hn—l .
Since &, is #,,-measurable, it follows that
Ep(ha/fon) = Eo(h,) = Eo(hyyy) < Eo(fove) = 1.
Now

[log x| = 21log o — log o < 2¢ — log 2;
therefore,

[ n7 log (ha/fon) | = 207 (ha/fon) — n7" 10g (Ro/fon) 5
a.e. [P]. Integrating with respect to P, we obtain
|ntlog fo, — ntlog h, || £ 207! — 'Ky [log (h,/fo)]-
However,

— Epllog (h./fon)] = —Hoy — (0 — N)(Hy, s — Hoy) + H,
= —NH —¢)—(n— N)H —¢)
+ H,, = —n(H —¢) + H,, ,

and so lim,_.. || n~log f,, — n*log I, || < e.
Using (4), we have, a.e. [P],

N—n—1
n'log h, = n7tlog foy + n7 Zz log (fo,x+1/fox) v,

which converges as n — o in L'(P) to a function k. by the Mean
Ergodic Theorem ([1], p. 667). This gives

Iim||n~'log fo. — k.|| < ¢, for every ¢ >0,

n—roco
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which makes n'log f,, a Cauchy sequence in L'(P), and therefore a
convergent sequence.

Final Remark. TFor the reader who may wish to consult [5],
we point out that the proof of the Moy-Perez Theorem given in [5]
is erroneous. The Theorem 2.3 of [5] states that the Moy-Perez result
holds as well for the case when (X,:te T) is stationary with respect
to P and @, with no Markov assumption made. This is false; a
counterexample is given in [3].
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