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If the outer boundary of the compact plane set E is the
union of finitely many disjoint analytic Jordan curves, the
Garabedian function of E is a familiar object. J. Garnett and
S. Y. Havinson have each asked whether the Garabedian func-
tions of a decreasing sequence of such sets must converge.
The present paper shows that they do converge. This fact
leads to a natural definition of the Garabedian function of an
arbitrary compact plane set. As an intermediate step, an ap-
proximate formula is obtained for the analytic capacity of the
union of a compact set £ and a small disc not intersecting FE.

1. Prerequisites and notation. Good introductions to Analytic
Capacity are given in [2], pp. 1-26, and [1], Ch. 8; and so we shall
give only a brief outline.

C denotes the complex plane. S? denotes the extended complex
plane with its usual topology. D(z;7) denotes the closed disc with
centre #z and radius 7.

Let K be a compact subset of C. 2(F) denotes the component
of S®\E containing <. The outer boundary of E is the boundary
0Q(E) of 2(E). The analytic capacity of E is:

Y(E) = sup {| ¢'(e=) |: ¢ analytic on 2(K), |g| <1} .

This supremum is attained by a unique function, the Ahlfors func-
tion of K ([1], p. 197).

& will denote the class of all compact plane sets whose outer
boundary is the union of finitely many pairwise disjoint analytic Jordan
curves. Let Fe .95 and write 2 = Q(E). The Hardy space H'(Q)
(0 < p < =) is the space of all analytic functions g on 2 such that
there exists a harmonic function » on @ with [¢g)? <u. If ge H*(Q)
then ¢ has a finite nontangential limit g(z2) at almost every point
zeo0l. H*R) is a separable Hilbert space with the inner product:

@1 =, s@h@"ds (g, he H(D) .

If e 2 there is a unique function K(z, {) in H*Q), the Szego kernel
Jumnction, such that:

00 = | oK 0% e HY@) .

K{(z, {) is the inner product between the functionals on H?*2) given
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by evaluation at z and , so that K(z, {) = 3, u,(?)u,({)*, whenever
{u,} is an orthonormal basis for H*Q). The Garabedian function is
most easily defined for our purpose as:

¥(z) = 27”7(E>2K<z, o)t

See [2], pp. 13-28.

Throughout, F will be a compact plane set, 2 = 2(F), and f will
be the Ahlfors function of E. If Ec.¥; K(z, ) will denote its Szego
kernel function, and + its Garabedian function.

We shall use the following results.

1.1. Let {F,} be a decreasing sequence of compact sets with
intersection E. Let f, be the Ahlfors function of E,. Then f,—f
uniformly on compact subsets of @, and v(E,) — v(E) ([1], p. 198).

1.2. Let Fe.%” Then:
(1) f and + are analytic across 32.
(2) [fl=1 on 00.
(3) f(R)W(2)dz = 0 on 0Q.
(4) (o) = 1/@2m7).
(5) K(e, )= 1/2rv(H)).
(2], pp. 18-23).

1.3. Let E, F be compact, v(E) = 0. Then v(EU F) = v(F) (an
immediate consequence of [2], Theorem 1.4, pp. 10-11).

1.4. Let E be compact, 0¢ E, EcC D(0; R). Denote by FE, the
inversion of E in the unit circle. Then:
v(Ey) = 7(E)/8R*
(proof similar to [1], Lemma 12.2, p. 229).

Finally we need the following result on Hilbert spaces.

ProrosiTION 1.5. Let h be a separable Hilbert space, and let {u,}
be a sequence of vectors im h whose closed linear span is h. Suppose
that the infinite matric T given by T.; = (u;, u;) is bounded and
invertible (as an operator on ). Then for every bounded linear
Junctional f on h the sequence {f(u;)} is square-summable and:

LI = 35 (T )f ) f ) -

Proof. T is positive, and so is the matrix of a positive operator



THE GARABEDIAN FUNCTION OF A COMPACT SET 291

Pe B(l,). P has a positive square root P'% which is invertible since P is
invertible. For 1=1, 2, 3, -.., write w; = P"%,, where ¢; is the vector
with 1 in its sth place and 0 elsewhere. Since PY? is invertible, I,
is the closed linear span of the w,. (w;, w;) = (P'%;, P'’¢;) = (Pe;, ¢)=
T,; = (u;, u;); so we can define a unitary J:1,—h by J(w;) = u; for
all 4, extended to the whole of I, by linearity and continuity. The
bounded linear functional J*f on [, is represented by some sel,.
(e;, P'%s) = (P, 8) = (w;, 8) = (J*fHw)) = f(Jw;) = f(u;). Hence
{f(u;)} is square-summable. Also:

CIE= sl = (PP ), (P's))
Z (T™)is(es, Ps)(ey, Ps)* = Z (T7)usf (wa) f ()"

2. The slope function. The purpose of this section is to es-
tablish Theorem 2.2, which gives an expression, up to first order in
¢, for the analytic capacity of a set of the form FE U D(z;¢), where
Ec & and zc 2(F). This will be extended to arbitrary compact sets
FE in §3. First we need a lemma which gives bounds on the Szego
kernel function.

LEMMA 2.1. Let Ec., (e Q(E), { +# . Let r, R be the least
and greatest distances of points of K from (. Then:

2 SRZ
Tenkn@) = LY=o

Proof. We prove the upper bound: the lower one is similar. We
may assume that { =0. Let ge HXQ), ||g!| £ 1. Denote inversion
in the unit circle by .. Define g, on 2, by ¢.(?) = g(z,)*. Clearly
g« € H¥(2,) and || g. || = 1/r. Hence:

o v < gl 1 R’
9O = lou=)F = 5 s S e S s
by 1.4. So:
K(0,0) = sup {|9(0) [z g H*Q), llgll =1} = §7w8£_(27€7'

There is a simpler bound for the Garabedian function: for, in
the above notation:

1 v(2)dz 1 , _ HE)
2ms ( 1 om LQ e —C =5 SA__WIdS = D=2

IV(C)

THEOREM 2.2. Let Eec .S There 1s a positive real-valued func-
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tion ax(C), the slope function of E, defined on 2, with the property
that for all {e Q:

7(E U DG ¢) = 7(E) + eax(l) + OF) .

ax(Q) is given explicitly by:

ax(C) = 2|y {1 — [ F(O} .

The bound in the error term depends only on Y(E) and on the ratio
of the greatest and least distances of points of E from C.

Proof. We may suppose that { = 0. Let », R be the least and
greatest distances of points of E from 0. Note that Ec D(0; R), so
that v(E) < R. We shall prove the theorem by showing that:

e < 107%(r/Ryv(E) — [7(E U D(0; €)) — Y(E) — €ax(0)]
< 10°(R/r)°v(E) "¢ .

Fix ¢ < 107%(r/R)’v(E). Since r < R and v(E) < R, we have ¢ <
107°r; so D(0; ) does not meet E. Write E, = E'U D(0;¢), 2, = &),
H* = HYQ), H = HY2,), v = Y(E), v, = ¥(E,). Choose an orthonormal
basis {u,} for H?. Now we can use the Cauchy integral to express
any element of H? as the sum of an element of H* and an element of
H*(S*\D(0; ¢)). The latter space is the closed linear span of {z~": % = 0}.
It follows that if, for n =1, v, is any function analytic on 2 except
for a pole of order » at 0, then H; is the closed linear span of {u,} U
{v,}. To be specific, we shall put:

grlR K(z, 0)

n@) = e R0 o

1.2 (5) says that 1/(27v,) is the square of the norm of evaluation at
o in H2. Our proof consists of calculating this by applying Proposi-
tion 1.5 to {u,} U {v,}.

We shall calculate various bounds now, so as not to break con-
tinuity later. Throughout, “|| ||” and “norm” will refer to the norm
of an element of a Hilbert space, or the norm of an infinite matrix
considered as a bounded operator on [,; and “|| |l.” will denote the
supremum of the absolute value of a function on the set D(0;¢).

Let z,eC, |2 |<e. For n = 1:

un(z) = 1 S u,(R)dz )
Y 2md Jiei=re 2 — 2,

Hence:
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1

S |, |ds ,
lzl="r/2
so that by Schwarz’s inequality:

Tr

e S ——— . 12ds .
”u ” - 477.'2(7'/2 '—5)2 SIZI:T/ZIM } 5
Summing over 7 and using Lemma 2.1 gives:

2 r
Sl S g ) K5

(1)

A

< reTr 8(R + 7'/2)2 < 3R¥ !
T An(r2 — ey 2m(r/2y T

since ¢ < 107°r and » < R. Analogous computation gives:

(2) S w5 < 50R 4y
In particular:
(3) S ul(0) P < BOR» ™y,

Next we want a bound for || d*/dz* K(z, 0)]l.. Let z,eC, |z]| <e.
Then for £ =1 and for all s < r:

& ! S K(z, 0)dz
K 0 2=z > ,
dat (zy )' 0 A1 Jlzi=s (Z - zo)k_H

_ k21  8R(R+s)
= 2m (s — &)t 2mr(r — s)y

(Here we have estimated | K(z, 0)| by K(z, 2)'*K(0, 0)* and then used
Lemma 2.1.) In particular, putting s = kr/(k + 1):

g, 0|k BR2R (k1

dz* 2r r(r — (k + l)e/k)s+'y k*
< E+ 1! 16R? o< B+ 1)
= 2r r(r — 2ty T r(r — 2)ty

This holds also for ¥ = 0 by Lemma 2.1. Hence for £k =0,1,2, ...:

We need one more estimate. Since ¢ < 107%, (4) gives:

‘ dK(z, 0)

~ 15F° .
dz

oo = 1'3’7

Hence, using Lemma 2.1 and the fact that ¢ < 10°R*°, we have:
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(5)  |IK( 0)]. = K(©,0) + e”ﬂ{g’—o)” < 1.01K(0, 0) .
v co
We shall imagine the basis {u,} U {v,} to be partitioned into three
sections. The first section consists of all the u,, the second section
consists of v, alone, and the third section consists of v, v, v, -
The corresponding matrix T of inner products will be in block form:

A BII CH
(6) T—I+M, M=|B D E”"
C E F

Next we calculate the inner products. Denote inner products in
H:by (,). By a statement of the form “X = Y with error Z” we
shall mean | X — Y| < Z, or || X — Y|| £ Z, according to context.

(%, U,) = S W uids = S w,uids + X WS = Oy + 27U,,(0)*u,(0)

a2y lzi=¢

2
0

+ 68 [ (0)" (. (ce™) — u,(0)) + (wnls€™)" — w,(0)")u,(ce™)]d .
| Wy W) = Oy — 2760 (0) "2, (0) | = 276%([] U ||l wn 1o + 100 [l 0 1)

Now the matrix [27eu,,(0)*u,(0)] has norm 2ze(>) | %..(0) |?] ., (0) [})'/F =
2me K(0, 0) < 8R**v~¢ by Lemma 2.1. The norm of the matrix
(2 (1 [ L+ 122 Ll 2 1] 5 2t most 47X (S, [l 1] 4 [12)1 =
200R**y¢* by (1) and (2). So (see the format (6)):

(7) A = [2meu,(0)*u,(0)] with error 200R*r—*v'e*.

Also, || A < S8R *v7'e 4 200R* v 'e? < 9(R/r)*v e < H(R/r)*v e since
€ <107% and r» < R. In fact the cruder bound || A || < 2500(R/r)*v "¢
will be sufficient. Observe that, since ¢ < 107%(»/R)*y, we have also
1Al = 1/40.

The mth element of B is:

eth* S K(z, 0)*u,ds
V@n) K(©, 0) Jon

L
- V' (2r) K(0, 0)st

(%M7 ,Ul) =

=

P

S‘,_ K(z, 0y u,(2)dz .

Now the second term on the right-hand side is:

=
vV (@7) K(0, 0)i

|0 0 = 0,0

by Cauchy’s theorem, and is therefore bounded in magnitude by
@me’/(V' @r) K(0, 0))) I5RY7*Y) || tn || by (4). So:




THE GARABEDIAN FUNCTION OF A COMPACT SET 295

- [:1/(271)81;{(0, 0) S 52 £ 2):%”(18:]

(8) ith 2mel* 15R* > \i/2
with error S K0.0) (N wm 112)

< 66K(0, 0)-Ror—ty~cH2

by (1). The norm of the matrix in the square brackets is at most:

e ( S | K(z, 0) Ids )1/2

V@r) K, 0) 12
gl , 1/2 gl
=760 KO, 07 <Saa’K(z’ 0 ds) = V0 KO, 0

Hence, using Lemma 2.1 and the fact that ¢ < 107%»/R)*y, (8) gives
[|B]] < 3Rr~%'*, The cruder bounds ||B]|<1/40 and ||B|f=<
2500(R/r)*v'e will suffice. Also, using (8) and the estimates calculated
in the last few lines, we have:

BB = [ € S K(z, O)ulkds S Kz, 0)*u%ds]
27Z'K(0, 0)* Joo 2 a0 pe

with error 20000R% %2 .

(9)

The elements of C are, for m = 1, n = 2:

gni? S K(z, 0)*u,ds
vV (27) K(0, 0) Joe (2*)"

g2 S . )
K O - n 1d .
T VR K, 0 Jei- (=, 0)*u,(2)2" "z

(U, v,) =

Call the first and second terms of the above expression P,, and Q..
respectively. Then:

oo
by
n=2

1PN S e

IK(Z, O) Izds a1}’
V0 K@, 0) Sao ¢ )

|zi2n

Mz

1 gt 12
= 1/ (27) K(0, 0) (H e K(0,0)>

S 3BRr 3y < (Rlryv e .

We estimate the integral in the expression for Q,., as follows. Replace
K(z, 0) by K(z, 0) minus its Taylor expansion about 0 as far as the
term in 2z"~'. By Cauchy’s theorem, these added terms do not affect
the integral. By Taylor’s theorem, K(z, 0) minus its Taylor expansion
is bounded on |z| =¢ by (e*/n!)||d"/dz" K(z, 0)]|.., and (4) gives an
estimate for that. This procedure gives:
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147 R? S e (n + 1P\ 2 \1/2
el = s %00y (5 r — 25y ) Sllualiy

147R* 167R>y 4¢*2 V'8 R
ey 1 1 VAr
< 6000 R r~"y%%2 < (R[r)y e .

IA

Hence [|[C|| < || Pll + || Q] < 2(R/r)*v™'e. Once again we shall need
only || C|| < 2500(R/r)*v ' < 1/40.
It is convenient to deal with [g gy] as a single matrix. Its
(m, n)th element (see (6)) is, for m =1, n = 1:
gmin—t S | K(z,0) |*ds i < gminTt S | K(2,0) "ds 5 )
27K(0, 0)* Joz  (2%)"2" 2K(0, 0)® Jizi=e  (2%)"2" ")

Denote by G, H,. respectively the first term and the bracketed
term of the above expression. We have:

gmtn—1

2nK(0, 0)rm+ *

Gm g 8’m+n—1 1 S K ,0 Zd —
l n‘ = 27TK(0, 0)2 pmEn agl (Z )] S

Hence ||G || =< 1/(2reK(0, 0))) v, /1™ < IR r*ve < X(R/r)*v'e. H is
trickier to deal with. We have:

_ 1 a7s
Hu = m&m‘ K(z 0)fds — 1

_ 1 * * -1

_ ms K(z, 0)(K(z 0)* — K0, 0))2"dz .

Lemma 2.1, (4) with £ = 1, and (5) now give |H,,| < 800R'r%. If
m > n, then:
H,, = —_F:LS K(z, 0)K(z, 0)*2""'d
273 K(0, 0) & 0Kz, 0)7em"dz .

As before, we may replace the second occurrence of K(z, 0) in the
integral by K(z, 0) minus its Taylor expansion, this time as far as
the term in 2™ "', Then by (5), Lemma 2.1, and (4) with k = m — n:

m—n 167R*y TR (m — n + 1)
1.01
r? r(r — 28)™ "ty
< A00R*r%(| m — n| + 1)(1/99998) ™"~
since ¢ < 10~%r. This holds similarly for m < ». Combining the cases
m=mn, m>n, and m < n, we see that:

| Hu| = 6

- cR* 100( 2 3 4 ces

< 2401R*% < 2401(R/r)*v s .
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So |\ F has norm at most ||G || + || H|| < 2500(R/r)*v"'¢. Hence
each of || D], || Ell, || F|| £ 2500(R/r)’v'e < 1/40.
To summarise: we have shown that:

LA, IBIE IICIL I DI, B, || FIl < 2500(R/ryy s ;

A0 a4 1B, el 1D, L EN, | FIl < 140 .

In particular we have verified that M is a bounded matrix: indeed
that || M|| < 3/40 < 1. Thus T = I + M is invertible, and Proposition
1.5 applies.

Our next step is to calculate the top left-hand block of the in-
verse of T. Since T7'=1—- M + M?* — M® + ---., this top left-hand
block is:

S=1
— A
+ A*+ BB + C*C
— A* — AB”B — AC"C — B"BA — B*DB — B*E"C — C"CA
— C*EB — C"FC
+ ..
The row of this expression containing products of degree = (n = 4)

consists of 3! terms. KEach of these terms has norm at most
(2500)*(R/r)*v~2%*1/40)""* by (10). Hence S = I — A + B”B with error:

(2500)2R™ <1 L. 1 101,11
(25007€*R™ FIR SRV RV SRV DI RIS SRS SR SR
o ST W T W T, ST LT ST
3 3 ) ) 0 0Byt
+ 27(1 3. <——40 + ) < 3.10%R/r)"y % .

Using (7) and (9), we have:

S = [5,% — 27eun(0)*w,(0) + : S

K(z, O)uids S K(z, 0)*u,ds }
21 K(0, 0)* *

z z

with error 200 R*r~%vy~'¢®*+ 20000 R®r %%+ 3.10%(R/7) v %* < 4.10%( B/ r) "y %"
Here and subsequently all integrals are taken round 09.

Finally we apply Proposition 1.5, which says that 1/2z7v,) =
> Spathm(e0),(c0)* (since v,(<) = 0 for all »). Hence:

L o 3 (o) | — 226 3w, (0) ua(o2) I

27y,
Y (R PRI

2

e
T 37K, 0y
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with error 4.10%(R/r)"v % 3, | thm(oo) [F=4.10%(R/7)"y %% (2xy). Multiply-
ing by 27y and using the fact that Zun(z)un(C)* = K(z, €), we have:

S K(z, 0)K(z, =)*ds |*
V4

Y Ve
—— =1 — 47*ve| K(0, =) |* +
1 v KO, =) K(0, 0)*

with error 4.10%(R/r)*vy%* .

Now the last term simplifies. On 092, f(2)v(2)dz =0, so that ds =
(v ()| 9(2) ) f(2)dz = (K(z, «)/K(2, )*) (f(2)/7) dz. Therefore:
S K{(z, 0)K(z, =)*ds _ _1'§ K(z, 0)K(z, =0)f(z)dz
2 1 2
= —2rK(0, 0)K(0, <) f(0)
since K{(z, 0)K(z, )f(2) is analytic on 2 and vanishes at co. Substi-
tuting in (11), we have:

;' =1 — 47*ve] K(0, =) {1 — | £(0) [} with error 4.10%R/r)*°vy~%¢*.
Now 47*ve| K(0, =) ({1 — | f(0) I'} < 47*veK(0, 0)K(co, o) < 8(B/r)yv e <
107%.  Also 4.10%R/r)*v%* £ 1/25. So we can invert to obtain:

% =1 + 4m*ve| K(0, =) |1 — | £(0) |} with error 10R/r) v~ ;

T =7 + 4% K(0, o) {1 — | f(0) %}
= v + 2me|4(0) {1 — | £(0) |?} with error 10°(R/r)*v~'e*.

It is as well to explain the curious choice of the functions v, in
the above proof. The only essential property of v, we used is that
it vanishes at < and is analytic on Q2 except for a pole at 0 near
which v,(2) = (2n)/%*%™™ + ..., The simpler choice w,(z) =
(2m)—12e~1%z shortens the proof but yields an error bound dependent
on the length of 02, which would have been unsuitable for the next
section.

3. Extension to arbitrary compact sets. We shall now show
how the above results extend to arbitrary compact sets E. In par-
ticular, we show how to define the Garabedian function of E, thus
solving a problem considered in [2] and [3].

Let E be compact. We shall suppose meantime that (&) > 0.
E can be expressed as the intersection of a decreasing sequence {E,}
in &% Hence v, and az, are defined. Fix {e 2(¥), and choose %,
so that { e 2(E,) whenever n > n,. By Theorem 2.2 there exist ¢ >
0, £ > 0, such that v > n, Ve < ¢,

(12) [ Y(E, U D €) — v(E,) — eag (0)]| = ke*.
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That is, for all ¢ <e¢, the sequence {¢az ({)}.>., considered as an
element of the Banach space of bounded sequences with the supremum
norm, is within a distance ke of the sequence {Y(E, U D(;e¢)) —
Y(E,asny Which converges to v(E U D({;¢)) — v(E) by 1.1. Thus
{az,(0)} is within a distance ke of the closed subspace ¢ of convergent
sequences, for all ¢, and is therefore itself in ¢. Call its limit az(0).
ayz is the slope function of E. Letting n-— o in (12) now gives, for
all e < ¢

| 7(E'U DG ¢)) — v(E) — eax(Q)| = ke’ .

This shows also that the limit a;({) is independent of the choice of
the sequence {E,}.

Now, for each n, |¥5 (0)| = az (0)/Cx{L — | f5, (0 [}}), and this con-
verges pointwise in Q(E). Moreover, {yz} is a normal sequence,
since, if F' is a compact subset of 2(E), {vz,} is uniformly bounded
on F' by the remark following Lemma 2.1. It follows that for some
sequence \, of points on the unit circle, {\,4; } converges uniformly
on compact subsets of Q(F). In fact we may take \, = 1, since
Vg, (00) = 1/(2mi). So {yz,} converges uniformly on compact sets. Call
its limit, {2}, the Garabedian function of E. Hence also a(0) =
2z| g, (O) {1 — 1 f2,(0) [*} converges uniformly on compact sets (and not
merely pointwise, as ascertained already).

Now suppose that v(E) = 0. We define ¥ x({) = 1/(2n1), ax(Q) = 1
for {ec 2(E). This is consistent with the relation a(0) = 27|+ 5(0)|
(1 — (03} since f(0) = 0. Y(E U D ¢) =c¢ for all e>0 by 1.3,
and so the relation v(E U D(E; ¢)) = v(&) + eax(l) + O(¢°) holds trivi-
ally. If {E,} is a sequence in 5“ decreasing to K, then v ({)—
1/(2n%) = ¥x({) uniformly on compact sets by the remark following
Lemma 2.1.

Finally, if E is compact, and {F,} is any sequence of compact
sets decreasing to E, the same working as above shows that , —
vz and az — a, uniformly on compact sets.

We have therefore proved:

THEOREM 3.1. The Garabedian function vz(0) and the slope func-
tion ax(C) can be defined for all compact sets E, in such a way that:

(1) The definitions coincide with the existing meanings if
Ee &

(2) If {E,} is a sequence of compact sets decreasing to E, then
VY, = Ve and az, — ap wniformly on compact subsets of 2(E);

(3) Y(EUDE <) =vE) + ca(l) + O for all e 2E), and
the bound in the error term depends only on Y(E) and on the ratio
of the greatest and least distances of points of E from {; and

(4) aQ) =2x[v Q{1 — [ £} for all e AE).
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The slope function is related to the problem of subadditivity of ~.
If E is connected, then az({) < 1: this is a re-statement of Bieberbach’s
distortion theorem. Subadditivity of v would obviously imply a(0) <
1 for all compact E.

I should like to thank Dr. A. M. Davie for his invaluable super-
vision.

Added in proof. N. Suita recently has independently proved the
uniqueness of the Garabedian function much more simply (“On a metric
induced by Analytic Capacity,” Kodai Math. Sem. Rep. 25 (1973),
215-218).
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