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The Sorgenfrey line S is the real line with the topology
generated by the half open intervals [a, 6). R. H. Sorgenfrey
proved that 5 is paracompact, while S X S is not paracompact,
or even normal. The two main results of this paper are that
S X S is strongly zero-dimensional, and that every real con-
tinuous function on S X S is in the first Baire class for the
Euclidean topology of the plane. These results answer
questions asked by P. Nyikos.

Interest in S x S arises from the important problem of whether
the product of strongly zero-dimensional spaces is strongly zero-
dimensional. The proof given for S x S shows the difficulties which
are involved in settling the general case. On the other hand, the
algebra Cb(S x S) of all bounded continuous functions on S x S is an
interesting example of a function algebra related to the Baire classes.
Its structure space β(S xS) is shown to be totally disconnected.

Since this paper was written we have learned that the strong
zero-dimensionality of S2 was proved independently and simultaneously
by Mrowka [3] and by two pairs: P. Nyikos—P. Roy and R. Heath—
D. Lutzer (their proofs will appear in a paper written by Nyikos).
Mrowka [3] proved that each continuous function on Sn (n an arbi-
trary cardinal) is of the first Baire class for the Euclidean topology.
Recently Mrowka [4] has proved the strong zero-dimensionality of
Sn for every cardinal n. In presenting this paper we claim no pri-
ority for the results, as we find they had been announced prior to
submission of our paper. However, we believe that the proofs given
here are conceptually very simple and intuitive.

1* Strong zerodimesionality* Following Nyikos [5] we call a
completely regular space X totally disconnected if no connected set
has more than one point, and zero-dimensional if it has a base of
clopen (= open and closed) sets. We say X is strongly zero-dimen-
sional if given any two disjoint zero sets Zλ and Z2 in X there exists
a clopen set C such that ^ g C , Z2 f] C = φ. For compact spaces
these properties are all equivalent (see [1], page 247, where the term
"zero-dimensional" is used for "strongly zero-dimensional"). The
following general theorem is known. (See [5] where further equiva-
lent conditions are given.)

THEOREM 1.1. Let X be completely regular. The following con-
ditions are equivalent:
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( i ) X is strongly zero-dimensional.
(ii) β{X) is totally disconnected.
(iii) Every cozero set in X is a countable of clopen sets.

The Sorgenfrey plane S x S has as base for its topology the
clopen boxes [α, b) x [c, d). If p = (x, y) e S x S and a > 0 we write
B(p, σ) — [xf x + σ) x [y, y + σ) and call it the clopen square cornered
at p with side σ. In what follows, there will be an interplay between
the Sorgenfrey and Euclidean topologies of the plane. We denote
these topologies by S? and g7 respectively. Thus int^ (A) means the
Euclidean interior of A, cl^ (A) is the closure of A for <5f etc. The
term clopen always refers to S*.

The Sorgenfrey plane is a zero-dimensional completely regular
space. To get a feeling for its asymmetrical character, note that
the relative topology on any line with negative slope is discrete, while
a line with positive slope is homeomorphic in its relative topology to
S. The Sorgenfrey line S is strongly zero-dimensional [5], We shall
prove that S x S is strongly zero-dimensional by establishing (iii)
above. Our first task is to determine a sufficiently large class of
clopen sets in S x S. The clopen boxes are insufficient, since there
are obvious clopen sets such as the triangle

x + V ^ l , 0 < s < 1 , 0 <y <1

which are not countable unions of clopen boxes. We give a way of
generating clopen sets from Sf-compact sets.

LEMMA 1.2. Let K be ^-compact, σ > 0 and

W = U B(P, σ)
peK

If Kn intgf (W) = φ, then W is clopen.

Proof. Clearly W is <5̂  open. We show it is ^closed. Suppose
that q0 is a point of We such that every clopen square B(qQ, ε) inter-
sects W. Taking ε = 1/n, we can find a sequence of points qn e
B(q0,1/ri) Π W. Then {qn} converges to q0 for both if and S< Now
q% e B(pn, σ), where {pn} is a sequence of points in K. Without loss
of generality we can suppose {pn} converges for g7 to a point p0 6 iϊ",
and that the Euclidean distance of each pn from pQ is less than σ/2.
Then g0 e dU JB(PO, <?)• Since qo£ W, it must lie on one of the two
open sides of B(pOf q).

Suppose without loss of generality that q0 lies on the upper open
side; i.e., q = (x, y0 + σ) where p0 = (α?0, y<>) and 0 ^ x ^ xQ + σ. We
investigate where the points pn must lie.



TWO PROPERTIES OF THE SORGENFREY PLANE 351

(1) No p , = (xn, yn) can have yn ^ y0. For no neighborhood
B(q0, ε) could contain a point qn.

(2) No pM lies in intc. J3(p0, σ), since then Kf] int^ (W) φ ψ.
(3) It must be true then that for all n

Xo — O < X% <J Xo ,

2/o < Vn < Vo + σ , n = l , 2 , ••- .

However, since pn —> p0 for g7, the horizontal line segment

(t,yo + σ), Xo ̂  t < Xo + σ ,

lies in (JΓ=i -B(^w, σ). Thus unless g0 = (a?0 + σ, Vo + "̂)> we would
have qoe W.

(4) If q0 = (a?0 + tf, 2/o + ^), then by (3) for each ε > 0, B(qQί e) n
•B(Pn, ̂ ) = 0. Thus no such square B(q0, ε) can contain a point ?n.

These cases show that it is impossible that pn —> p0, and we have
the required contradiction.

The condition on K cannot be dropped. For example take K to
be the segment x = y, 0 <̂  x S 1, and σ = 1. The point (1, 0) is an
^ l i m i t point of \JkeκB(k, 1) but is not a member of this set.

THEOREM 1.3. Let V be any S^-open set in S x S. There exists
a sequence {Qn} of clopen sets such that

Proof. It is clearly sufficient to consider the case where V is
bounded for g7. Let σ > 0 and define

Then Aΰ is g^-compact. For let an e A, an-+ a0 for g7. We have

int,- B(aQ, σ) £ U B(an, σ) £ cl ^ F .

Thus B(a0, σ) £ cl^ F, so α0 6 Aσ. Now define

Kσ — Aσ ~ int^ (cl^ F)

and

Wσ = U 5(fc, σ) .

Then Kσ is g"-compact, and

iΓσ n int* TΓβ = ί5 .

It follows from Lemma 1.2 that TFσ is clopen.
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We prove now that V can be covered by a sequence of clopen
sets contained in cl^ V. First suppose that peV~ intg. (cl^ V).
Since V is ^open, there exists δ > 0 such that B(p, 3) g V. Thus
peKδs Wδ. If ^ < d2 we have ίΓδl S Kh. Thus

F - int^(cl^F) S U XΊ/. £ U Wlln S dU 7 .

Further intg- (cl^ V) is open for if, and hence is the union of a
sequence {Zn} of clopen boxes. Letting Qn = Zn U W1/w, we have

An open set U for ^ is called regular if [7= int^(cl^ ί7).

COROLLARY 1.4. Every regular open set in S x S is a countable
union of clopen sets, and hence a cozero set.

Theorem 1.3 also solves the problem of strong zero-dimensionality
for S x S.

THEOREM 1.5. The Sorgenfrey plane is strongly zero-dimensional.

Proof. We verify (iii) of Theorem 1.1. Let U be a cozero set
in S x S. Then U = U"=i Uk where each Uk is a cozero set with

Uk S c k ί4 £ 0 i + ι .

By Theorem 1.3 each Uk has a countable cover by clopen sets con-
tained in ϋ7, so U is a countable union of clopen sets.

In the proof of Theorem 1.5 the Euclidean topology seems to
play an essential role in several ways—particularly in identifying
clopen sets in the product other than the obvious clopen boxes. Any
attack on the general problem of whether the class of strongly zero-
dimensional spaces is closed under products must surmount this dif-
ficulty of providing a rich source of clopen sets.

Finally we give an example of an open set in S x S which is
not a countable union of clopen sets. Let U be the "open" triangle
x + y > 1, 0 < # < l , 0 <y < 1 together with those points on the
hypotenuse whose coordinates are irrational. Then U is <5^open.
If U were a countable union of clopen sets it would be a cozero set.
It follows from Theorem 2.1 below that U would be an Fσ set for
if, i.e., £7= (J"=i K« where each Kn is S?-compact. This is impossible,
since the set of irrationals on the diagonal is not itself an Fσ set.
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2 Baire measurability* The following result answers a ques-
tion asked by P. Nyikos1.

THEOREM 2.1. Every ^-continuous real function f on S x S is
in the first Baire class for the Euclidean topology of the plane.

Proof. For a point p = (x, y) e S x S, let

C(p, σ) = [ x , x + σ ] x [y, y + σ]

be the closed square of side σ cornered at p. The continuity of /
on S x S can be expressed by the condition that for each pe S x S
and ε > 0, there exists a closed square C(p, 8) such that

(#) \f(Q)-f(p)\ < ε , if qeC(p,δ).

We first show that / is Lebesgue measurable. Let ε > 0 be fixed
and let &~ be the collection of all closed squares C(p, 8), for points
peS x S such that relation (#) holds. The collection J^ covers the
plane in the sense of Vitali. Thus by the Vitali Covering Theorem
(as in [2], page 366) there exists a disjoint sequence {Cn} g ^ such
that

m((S x S) ~ U Cn) = 0 ,
\ n=l /

where m is Lebesgue measure. Define the function g on U«=i Ĉ  a s

follows: if Ĉ  = C(p, δ), let

At other points let ^(p) — 0. Then g is Lebesgue (in fact Borel)
measurable and

\g(p)~f(p)\<e

almost everywhere for m. Taking successively ε = 1/n, we obtain
that / is almost everywhere the uniform limit of Borel measurable
functions, and hence Lebesgue measurable.

Now for each n let Gn = {q \\f(q) \ ̂  n), and define the averaging
functions

K(p) - n2 \ f(q)kGn(q) dm , n = 1, 2, . . . .

Then hn is g'-continuous. Because / is ̂ -continuous

l ί m h n ( p ) = f ( p ) , p e S x S ,

so / is of the first Baire class.
1 In Problem 40 from the Mathematics Problem Book of Carnegie-Mellon University

he asks whether such / are Borel measurable.
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