Pacific Journal of Mathematics

HELLY AND RADON-TYPE THEOREMS IN INTERVAL CONVEXITY SPACES

PHILLIP WAYNE BEAN

Vol. 51, No. 2

December 1974

HELLY AND RADON-TYPE THEOREMS IN INTERVAL CONVEXITY SPACES

PHILLIP W. BEAN

The notion of interval convexity T on a point set S is defined. If T is an interval convexity defined on S, $\mathscr{C}(T)$ will denote the collection of nonempty T-convex subsets of S. Properties k, H(k) (a Helly property), and R(k, n) (a Radon property) are defined on $\mathscr{C}(T)$, and relationships between these properties are investigated.

A partial order convexity \leq on a point set S is a special type of interval convexity. Some sufficient conditions are imposed on \leq and $\mathscr{C}(\leq)$ to insure the existence of certain Radon-type properties.

1. Introduction. Suppose S is a point set, and $\mathscr{P}(S)$ is the collection of nonempty subsets of S. The statement that T is an *interval convexity* on S means that T is a transformation from $S \times S$ into $\mathscr{P}(S)$. A subset M of S is said to be T-convex provided that T(x, y) is a subset of M for every x and y in M. Let $\mathscr{C}(T)$ denote the collection of all nonempty T-convex subsets of S. For each $M \in \mathscr{P}(S)$, the convex hull of M relative to T, denoted by Co (M), is the intersection of the elements of $\mathscr{C}(T)$ which contain M. We assume that if each of x and y is in S, then T(x, y) is T-convex, T(x, y) contains x and y, and T(x, y) = T(y, x).

Let *m*-set mean a set of *m* points of *S*. A subset *M* of *S* is said to be *n*-divisible provided it may be partitioned into *n* mutually exclusive subsets whose *T*-convex hulls have a common point of *S*. In this paper we consider the relationship of the following Helly and Radon-type properties on a set *S* with an interval convexity *T*. $\mathscr{C}(T)$ has property R(k) if each (k + 1)-set of *S* is 2-divisible, and more generally, $\mathscr{C}(T)$ has property R(k, n) with respect to some integer valued function *f* if each [f(k, n)]-set is *n*-divisible. We say that $\mathscr{C}(T)$ has property R(k). $\mathscr{C}(T)$ is said to have property H(k) provided that if \mathscr{G} is a finite subcollection of $\mathscr{C}(T)$ containing at least *k* elements, then the following two statements are equivalent:

(a) Each k elements of \mathcal{G} have a common point.

(b) The elements of \mathcal{G} have a common point.

In (2) we give sufficient conditions for property R(k) to be equivalent to property H(k). We also consider in (2) the existence of sets with property R(k) in partially ordered spaces and more generally, in (3) the existence of sets with property R(k, n).

2. Theorems concerning properties k, R(k), and H(k). From a theorem of Levi [7] we have that property R(k) implies property H(k). In [1] Calder introduces the following property: C(T) has property k provided that if M is a finite point set containing at least k + 1 points, then there exists a point p such that $p \in Co [M \sim \{m\}]$ for each m in M. He proves that property k is equivalent to property H(k) and then proves that property R(k) is equivalent to property H(k) in a partially ordered space. It should be noted that the partial order does not have to be antisymmetric. Calder also gives an example of an interval convexity T such that property H(k) is not equivalent to property R(k) in C(T). In the first two theorems of this section we give sufficient conditions on T for properties H(k) and R(k) to be equivalent.

If each of A and B is in $\mathscr{P}(S)$, then A * B denotes the set

 $\bigcup_{a \in A, b \in B} T(a, b)$.

THEOREM 2.1. Let T be an interval convexity on S such that for each M in $\mathscr{S}(S)$, Co (M) = M * M; and if a, b, c, and d are four distinct points such that d is in T(a, b) and T(a, c), then b is in T(a, c), or c is in T(a, b). Then property $H(k) \Leftrightarrow$ property R(k) in $\mathscr{C}(T)$.

THEOREM 2.2. Let T be an interval convexity on S such that for each M in $\mathscr{S}(S)$, Co $(M) = \bigcup_{m \in M} T(m, m)$. Then property $H(k) \Leftrightarrow$ property R(k) in $\mathscr{C}(T)$.

The proofs of Theorems 2.1 and 2.2 are easy modifications of the proof of Theorem 3.2 of Calder [1].

EXAMPLE 2.1. Let M be a subset of a linear space S. A subset K of M is said to be *extremal* provided that if k is an element of K, and there exist elements x and y in M such that k = tx + (1 - t)y for some $t \in (0, 1)$, then x and y are elements of K. Obviously, the union and intersection of any collection of extremal subsets of M are extremal.

We define an interval convexity T on M as follows: If each of x and y is an element of M, T(x, y) is the intersection of the extremal subsets of M which contain $\{x, y\}$.

For each subset K of M, $K \subset \bigcup_{k \in K} T(k, k)$. Since $\bigcup_{k \in K} T(k, k)$ is convex, $\operatorname{Co}(K) \subset \bigcup_{k \in K} T(k, k)$. However, $\bigcup_{k \in K} T(k, k) \subset \operatorname{Co}(K)$. Thus $\operatorname{Co}(K) = \bigcup_{k \in K} T(k, k)$, and hence property $H(k) \Leftrightarrow$ property R(k) in $\mathscr{C}(T)$.

Let \leq be a partial order on the set S. If each of x and y is a point of S, $[x, y] = \{p \mid p = s, \text{ or } p = y, \text{ or } x$ A subset M of S is said to be \leq -convex if for all elements x and y of M, [x, y] is a subset of M. The collection of all \leq -convex subsets of S is denoted by $\mathscr{C}(\leq)$. In [5], Franklin shows that $\operatorname{Co}(M) = M * M$ for any M in $\mathscr{P}(S)$.

THEOREM 2.3. Suppose \leq is a partial order on S, and S is the union of n linearly ordered sets, S_1, S_2, \dots, S_n . Then $\mathscr{C}(\leq)$ has property R(2n).

Proof. Suppose $M = \{x_1, x_2, \dots, x_{2n+1}\}$ is a (2n + 1)-set. Then for some $i, 1 \leq i \leq n, S_i$ contains at least three points, z_1, z_2, z_3 , of M such that $z_1 < z_2 < z_3$. Thus Co $\{z_2\}$ and Co $\{z_1, z_3\}$ have a common point, and therefore $\mathscr{C}(\leq)$ has property R(2n).

It is easy to show that $\mathscr{C}(\leq)$ has property r(2) if and only if \leq linearly orders S. Suppose \leq is a partial order on S which does not linearly order S. Under these conditions on \leq , does $\mathscr{C}(\leq)$ have property r(3) if and only if S is union of two mutually exclusive, linearly ordered subsets S_1 and S_2 ? The following example shows the answer to this question is no.

EXAMPLE 2.2. Let $S = \{(x, y) \in R^2 | y = 0 \text{ or } y = 1\}$. Define \leq on S as follows: $(x_1, y_1) \leq (x_2, y_2)$ if $y_1 = y_2$ and $x_1 \leq x_2$. Thus \leq is a partial order on S which does not linearly order S. However, \leq does linearly order $S_1 = \{(x, 1) \in R^2\}$ and $S_2 = \{(x, 0) \in R^2\}$, and $S = S_1 \cup S_2$. To show that $\mathscr{C}(\leq)$ does not have property r(3) we choose $M = \{(0, 0), (1, 0), (0, 1), (1, 1)\}$. Obviously M is not 2-divisible.

3. Property R(k, n). Tverberg shows in [11] that the collection on convex sets in R^{k-1} has property R(k, n) with respect to f(k, n) = (n-1)k + 1 for $n, k \ge 2$. By putting suitable restrictions on T, we have the following:

THEOREM 3.1. Suppose T is an interval convexity on S such that if $M \in \mathscr{S}(S)$, then $\operatorname{Co}(M) = \bigcup_{m \in M} T(m, m)$. If $\mathscr{C}(T)$ has property R(k), then $\mathscr{C}(T)$ has property R(k, n) with respect to f(k, n) = (n - 1)k + 1 for $n \geq 2$.

Proof. (We use induction on *n*.) Suppose $\mathscr{C}(T)$ has property R(k), i.e., $\mathscr{C}(T)$ has property R(k, 2). Suppose further that $\mathscr{C}(T)$ has property R(k, m) for some $m \geq 2$, and let $M = \{x_1, x_2, \dots, x_{mk+1}\}$ be an [mk + 1]-set. Let $M_1 = \{x_1, x_2, \dots, x_{(m-1)k+1}\}$ be the subset of M containing the first (m - 1)k + 1 points of M. Then there exist m points, $y_{11}, y_{12}, \dots, y_{1m}$, of M_1 and a point p_1 such that

$$p_1 \in igcap_{i=1}^m \operatorname{Co} \left\{ y_{1i}
ight\}$$
 .

Now choose $M_2 = \{x_1, x_2, \dots, x_{(m-1)k+1}, x_{(m-1)k+2}\} \sim \{y_{11}\}$. Thus M_2 is an [(m-1)k+1]-set, and hence there exist *m* points, $y_{21}, y_{22}, \dots, y_{2m}$, of M_2 and a point $p_2 \in \bigcap_{i=1}^m \text{Co} \{y_{2i}\}$.

Continuing this process we get $M_j = [M_{j-1} \cup \{x_{(m-1)k+j}\}] \sim \{y_{j-11}\}$ for $3 \leq j \leq k+1$, and each of the sets is an [(m-1)k+1]-set. Thus there exist *m* points, $y_{j_1}, y_{j_2}, \cdots, y_{j_m}$, of M_j and a point $p_j \in \bigcap_{i=1}^m \operatorname{Co} \{y_{j_i}\}$.

Let $K = \{p_1, p_2, \dots, p_{k+1}\}$. If $p_i = p_j$ for some $i \neq j$, the theorem is proved. Suppose $p_i \neq p_j$ if $i \neq j$. Since $\mathscr{C}(T)$ has property R(k), there exist points, p_i and p_j , i < j, in K and a point

$$p_{\scriptscriptstyle 0} \in \operatorname{Co} \left\{ p_i \right\} \cap \operatorname{Co} \left\{ p_j \right\}$$
 .

Since for each $x \in S$, T(x, x) is convex, we have $p_0 \in \operatorname{Co} \{y_{i1}\} \cap \operatorname{Co} \{y_{j1}\} \cap \cdots \cap \operatorname{Co} \{y_{jm}\}$. Thus M is (m + 1)-divisible and $\mathscr{C}(T)$ has property R(k, m + 1). Therefore, $\mathscr{C}(T)$ has property R(k, n) with respect to f(k, n) = (n - 1)k + 1 for all $n \geq 2$.

EXAMPLE 3.1. In R^2 let l/P and $\overline{l/P}$ denote, respectively, the open and the closed half planes determined by the line l and containing the point P. PQ denotes the line determined by the points P and Q, and P[m] denotes the line through P with slope m. Let $P_0 = (0, 0), P_1 = (1, 0), P_2 = (-1/2, \sqrt{3}/2), P_3 = (-1/2, -\sqrt{3}/2), P_4 = (1, 1), P_5 = (-1, 0), P_6 = (1, -1)$. Choose $S = S_1 \cup S_2 \cup S_3$ where $S_1 = P_0 P_1/P_4 \cap P_0 P_2/P_4, S_2 = P_0 P_2/P_5 \cap P_0 P_3/P_5$, and $S_3 = P_0 P_1/P_6 \cap P_0 P_3/P_6$ We define an interval convexity T on S as follows:

(a)
$$T(P, P) = \begin{cases} S_1 \cap \overline{P[-\sqrt{3}]/P_0} & \text{if } P \in S_1; \\ S_2 \cap \overline{P[\sqrt{3}]/P_0} & \text{if } P \in S_2; \\ S_3 \cap \overline{P[0]/P_0} & \text{if } P \in S_3. \end{cases}$$

(b) $T(P, Q) = T(P, P) \cup T(Q, Q).$

Thus if $M \in \mathscr{S}(S)$, Co $(M) = \bigcup_{m \in M} T(m, m)$. It is easily seen that $\mathscr{C}(T)$ has property r(3). Thus if $k \geq 3$, $\mathscr{C}(T)$ has property R(k, n) with respect to f(k, n) = (n - 1)k + 1 for $n \geq 2$.

THEOREM 3.2. Suppose $\leq is$ a partial order on S such that $\mathscr{C}(\leq)$ has property R(k). Then $\mathscr{C}(\leq)$ has property R(k, n) with respect to f(k, n) = (2n - 3)k + 1 for all $n \geq 2$.

Proof. (The proof is a slight modification of the proof of Theorem 3.1.) The statement is true for n = 2 since property R(k) is the same as property R(k, 2). Now suppose the statement is true for

n = m, and let $M = \{x_1, x_2, \dots, x_{(2m-3)k+1}, \dots, x_{(2m-1)k+1}\}$ be a [(2m-1)k + 1]-set. (Note that [(2m-1)k + 1] - [(2m-3)k + 1] = 2k.) Let $K_0 = \{x_1, x_2, \dots, x_{(2m-3)k+1}\}$ be the subset of M containing the first (2m - 3)k + 1 points of M. Thus there exist m mutually exclusive subsets, $K_{01}, K_{02}, \dots, K_{0m}$, of K_0 and a point $y_0 \in \bigcap_{i=1}^m \operatorname{Co}(K_{0i})$. It follows then that there exist points s_0 and t_0 in K_0 such that $s_0 < y_0 < t_0$. Now let K_1 be the [(2m-3)k + 1]-set $[K_0 \sim \{s_0, t_0\}] \cup \{x_{(2m-3)k+2}, x_{(2m-3)k+3}\}$. Again there exist m mutually exclusive subsets, $K_{11}, K_{12}, \dots, K_{1m}$, of K_1 such that $\bigcap_{i=1}^m \operatorname{Co}(K_{1i}) \neq \emptyset$. If $y_0 \in \bigcap_{i=1}^m \operatorname{Co}(K_{1i})$, the theorem is proved.

Suppose $y_0 \notin \bigcap_{i=1}^m \operatorname{Co}(K_{1i})$. Let $y_1 \in \bigcap_{i=1}^m \operatorname{Co}(K_{1i})$. Then there exist points s_1 and t_1 in K_1 such that $s_1 < y_1 < t_1$.

Continuing this process for $2 \leq i \leq k$, we obtain $K_i = [K_{i-1} \sim \{s_{i-1}, t_{i-1}\}] \cup \{x_{(2m-3)k+2i}, x_{(2m-3)k+(2i+1)}\}$ and correspondingly m mutually exclusive subsets, $K_{i1}, K_{i2}, \dots, K_{im}$, of K_i such that $\bigcap_{p=1}^{m} \operatorname{Co}(K_{ip})$ contains a point y_i . Now if for some j and $i, 0 \leq j < i \leq k, y_j \in \bigcap_{p=1}^{m} \operatorname{Co}(K_{ip})$, the theorem is proved.

Suppose that if $0 \leq j < i \leq k, y_j \notin \bigcap_{p=1}^m \operatorname{Co}(K_{ip})$. Then the (k + 1)-set $C = \{y_0, y_1, \dots, y_k\}$ is 2-divisible. Let C_1 and C_2 be mutually exclusive subsets of C such that $\operatorname{Co}(C_1) \cap \operatorname{Co}(C_2) \neq \emptyset$. It can be shown that if $w \in \operatorname{Co}(C_1) \cap \operatorname{Co}(C_2)$ then there are m + 1 mutually exclusive subsets, M_1, M_2, \dots, M_{m+1} , of M such that $w \in \bigcap_{i=1}^{m+1} \operatorname{Co}(M_i)$. Hence M is m + 1 divisible. Therefore, $\mathscr{C}(\leq)$ has property R(k, n) with respect to f(k, n) = (2n - 3)k + 1 for all $n \geq 2$.

References

1. J. R. Calder, Some elementary properties of interval convexities, J. London Math. Soc., 3 (1971), 422-428.

2. L. Danzer, N. Grümbaum, and V. Klee, *Helly's theorem and its relatives*, Proceedings of Symposia in Pure Mathematics, **7** (1963), Convexity, 101-177.

3. J. Eckhoff, Der Satz von Radon in honvexen Productstrukturen I - II, Monatsh. Math., **72** (1968), 303-314, and **73** (1969), 7-30.

4. J. W. Ellis, A general set-separation theorem, Duke Math. J., 19 (1952), 417-421.

5. S. P. Franklin, Some results on order convexity, Amer. Math. Monthly, **69** (1962), 357-359.

6. David Kay and E. W. Womble, Axiomatic convexity theory and relationships between the Caratheordory, Helly and Radon numbers, Pacific J. Math., **38** (1971), 471-485.

7. F. W. Levi, On Helly's theorem and the axioms of convexity, J. Indian Mathematical Society, (N. S.) Part A, **15** (1951), 65-76.

8. T. S. Motzkin, *Linear Inequalities*, Mimeographed lecture notes, University of California, Los Angeles, 1951.

9. J. R. Reay, Caratheordory theorems in convex product structure, Pacific J. Math., **35** (1970), 227-230.

10. ____, An extension of Radon's theorem, Illinois J. Math., 12 (1968), 184-189.

11. H. Tverberg, A generalization of Radon's theorem, J. London Math. Soc., 41 (1966), 123-128.

Received February 13, 1973 and in revised form November 11, 1973.

MERCER UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024 J. DUGUNDJI*

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

K YOSHIDA

ASSOCIATE EDITORS

SUPPORTING INSTITUTIONS

E.F. BECKENBACH

R. A. BEAUMONT

University of Washington

Seattle, Washington 98105

B. H. NEUMANN

F. WOLF

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 51, No. 2 December, 1974

Robert F. V. Anderson, Laplace transform methods in multivariate spectral	330
William George Bade Two properties of the Sorgenfrey plane	349
John Robert Baxter and Rafael Van Severen Chacon, <i>Functionals on continuous</i>	355
Phillip Wayne Bean, <i>Helly and Radon-type theorems in interval convexity</i>	363
James Dobert Doone On k quetient mannings	260
Donald D. Provin. Extended prime apots and guadratic forms	270
William Hugh Commish. Crawley's completion of a conditionally upper continuous	519
witham Hugh Cormsn, Crawley's completion of a conditionally upper continuous	207
Pohort S. Cunningham. On finite left logalizations	397 407
Robert Is: Cummingham, <i>On junie tejt localizations</i>	407
embedded in s ⁿ by tame polyhedra	417
Burton I. Fein, <i>Minimal splitting fields for group representations</i>	427
Peter Fletcher and Robert Allen McCoy, <i>Conditions under which a connected</i>	
representable space is locally connected	433
Jonathan Samuel Golan, <i>Topologies on the torsion-theoretic spectrum of a</i> <i>noncommutative ring</i>	439
Manfred Gordon and Edward Martin Wilkinson, Determinants of Petrie	
matrices	451
Alfred Peter Hallstrom, A counterexample to a conjecture on an integral condition	
for determining peak points (counterexample concerning peak points)	455
E. R. Heal and Michael Windham, <i>Finitely generated F-algebras with applications</i>	
to Stein manifolds	459
Denton Elwood Hewgill, On the eigenvalues of a second order elliptic operator in	
an unbounded domain	467
Charles Royal Johnson, <i>The Hadamard product of A and A</i> *	477
Darrell Conley Kent and Gary Douglas Richardson, <i>Regular completions of Cauchy</i>	100
spaces	483
Alan Greenwell Law and Ann L. McKerracher, <i>Sharpened polynomial</i>	10.1
approximation	491
Bruce Stephen Lund, Subalgebras of finite codimension in the algebra of analytic	40.5
functions on a Riemann surface	495
Robert Wilmer Miller, <i>TIF classes and quasi-generators</i>	499
Roberta Mura and Akbar H. Rhemtulla, <i>Solvable groups in which every maximal</i>	500
partial order is isolated	509
Isaac Namioka, Separate continuity and joint continuity	515
Edgar Andrews Rutter, A characterization of QF – 3 rings	533
Alan Saleski, Entropy of self-homeomorphisms of statistical pseudo-metric	527
spaces	537
Ryotaro Sato, An Abel-maximal ergodic theorem for semi-groups	543
H. A. Seid, Cyclic multiplication operators on L_p -spaces	549
H. B. Skerry, On matrix maps of entire sequences	563
John Brendan Sullivan, A proof of the finite generation of invariants of a normal subgroup	571
John Griggs Thompson, <i>Nonsolvable finite groups all of whose local subgroups are solvable, VI</i>	573
Ronson Joseph Warne, Generalized $\omega - \mathcal{L}$ -unipotent bisimple semigroups	631
Toshihiko Yamada, On a splitting field of representations of a finite group	649