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Let T be a complex irreducible representation of a finite
group G of order n and let y be the character afforded by 7.
An algebraic number field K O Q(y) is a splitting field for y
if T can be written in K. The minimum of [K: Q(y)], taken
over all splitting fields K of y, is the Schur index m(x) of
z. In view of the famous theorem of R. Brauer that Q(e**/n)
is a splitting field for x, it is natural to ask whether there
exists a splitting field L with Q(e**!/n) DL D Q(x) and [L: Q(x)] =
Mme(x). In this paper examples are comstructed which show
that such a splitting field L does not always exist. Sufficient
conditions are also obtained which guarantee the existence of
a splitting field L as above.

Throughout this paper @ will denote the field of rational numbers.
If K is an algebraic number field and p is a prime of K, we denote
the completion of K at p by K,. If A is a simple component of a
group algebra over @, the center of A being K, and 7, and =, are
primes of K extending the rational prime p, then the indices of
AR K, and A Qx K., are equal [2, Theorem 1]. We write l.i.,A
for this common value and refer to l.¢.,4 as the p-local index of A.
If LD K and L is an abelian extension of @, we refer to the rami-
fication degree of a prime 7w of K from K to L as the g-ramification
degree where 7 extends the rational prime q. Clearly, this does not
depend on the choice of 7. We use similar notation when referring
to residue class degrees.

Throughout this paper ) will denote an irreducible complex
character of a finite group G of order n. There is a unique con-
stituent &7 of the group algebra of G over Q(y) corresponding to
% in the sense that the representation of G afforded by a minimal
left ideal of & is equivalent to my(y)7, where T affords . If D
is the division algebra component of . we say that D (and .%) is
associated with y. The index of D equals my(¥) and y is realizable
in K if and only if K is a splitting field for D. We refer the reader
to [1] for the relevant theory of algebras assumed.

We denote a primitive mth root of unity by ¢,. Gal (L/K) denotes
the Galois group of L over K, and [L: K] the degree of L over K.
If A and B are two central simple K-algebras we write A ~ B to
denote that A and B are similar in the Brauer group of K.

A special case of the following lemma is proved in [6, page
631]:
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LEMMA. Let F be the completion of an algebraic number field
at a finite prime and suppose the residue class field of F has ¢
elements. Let p be a prime, ptq, and suppose p*{q—1, p'*'yq — 1.
Let E be a cyclic extension of F of degree p°-p’ where p°, ¢ > 0, is
the ramification degree of E over F. Let (o) = Gal(E/F) and let
es€F. We have:

(1) Let p* =2 so ¢, = —1. Then the cyclic algebra (E, 0, —1)
has index 2.

(2) Suppose p' =3 and s =v > 0. Then (E, 0,¢,) has index
P if and only if t = e + s — v.

Proof. By Hensel’s lemma, ¢,:e F, e,e1¢ F. Let [K: F] =p/, K
unramified over F. All p-power roots of unity in E are in K. If
p' = 3, an easy induction shows that E contains a primitive p‘"/th
root of unity but does not contain a primitive p**/+'th root of unity.
If p* =2 and f> 0, then F contains a primitive 2**/th root of unity
but not a primitive 2°*/th root of unity. If p* =2 and f = 0, then
E does not contain ¢,. From the theory of cyclic algebras over local
fields, (E, o, ¢,) has index p’ if and only if ¢+ is a norm from
E to F but ¢,—+ is not a norm. Suppose ..~ is a norm from E to
F. Let N denote the norm map from F to F. Since ¢,:— is a unit,
g,s—0 = N(7v) where 7 is a unit of E. Let Uy, U, denote, respectively,
the units and the units (mod1l) of E. We have Ugy, = E*, the
multiplicative group of the residue claas field of E. Since F and K
have the same residue class field, there is a root of unity § in K
with YUz = 0Up.  Since NO)Um = €,5—vUp = N(0) U, we may assume
that 6 has p-power order. Let N’ denote the norm from K to F.
Then N(6) = N'(0*°) since 6 € K. Since Gal (K/F) is generated by the
Frobenius automorphism, we have N(6) = 0™° where

m=("-1)/@-1).

Suppose (1) holds so p* =2, ¢, = —1. (&, g, —1) has index 1 or
2 and we have index 1 if and only if —1 is a norm from E. By the
argument above, if —1 is a norm, then —1U, = 6™°U,: where § is
a 2-power root of unity, e > 0, and m = (¢ — 1)/(¢ — 1). One verifies
easily that 6™ =1, a contradiction.

Now suppose (2) holds. Assuming ¢, is a norm from E we
obtain, as above, that N(0) is a power of a primitive p'*th root of
unity. Thus t —e=s—v so t=s+ e — v. Conversely, if t =s +
e — v, then E contains a primitive p*t**~*th root of unity {. An
easy calculation using the Frobenius automorphism shows that N({*) =
€u~0 for some u. Let &= (K, 0,¢,) s0 ¥ ~ (F, 0,¢s). If
t =s+ e — v, then we have shown that &*" ~ F. If v ' ~ F,
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then we would have t = s + e — v + 1 which is not the case. Thus
t =s -+ e — v implies .97 has index p°. Conversely, if .o has index
p,, thent > s+e—v. Ift=s+e— v+ 1 we would have .o7*"™" ~
F. Thus t =8 + ¢ — v, proving the lemma.

We can now construct an example (actually one for each prime
p) of an irreducible character ) of a finite group G of order » such
that me(x) = p but no subfield L of Q(¢,) with [L:Q(¥)] =p is a
splitting field for .

ExamMpPLE. Let p be an arbitrary prime. Let r be prime,
r =1(mod p%, » # 1 (mod »°). Let ¢ be a prime, ¢ =1(modr), ¢ =
1 (mod p*), and ¢ %= 1 (mod p°). Let F be the subfield of Q(e,) with
[Q(c,): F] = »* and let E be the subfield of Q(e,) with [Q(e,): E] = p.
Let (o) = Gal (Q(&,3.,)/F(e,3,)) and <) = Gal (Q(&,20-)/E(e,3,)). Let K
be the fixed field of {o7). Then K(c,) = Q(&,,) and [K(e,): K] = p'.
Since ¢ is totally ramified from EF(e,) to F(e,3,) and splits completely
from EF(e,) to E(e,s,.), we see that g is totally ramified from EF(e,s)
to K. Thus the ramification degree of ¢ from K to K(e,) is p* and
the residue class degree is 1.

Let G =<w, ¢, 9, 2| w' = a" = 2** = 1, y** = 2, z central, (w, ) = 1,
¥y 'wy = w*, y'ey = ¢*> where o7(s,) = (¢,)* and oz(e,) = (¢,)’. The
cyclic algebra o= (Q(&,3,,), 07, &,5) is a homomorphic image of the
group algebra of G over @ and so there exists a complex irreducible
representation T of G with character ¥ such that the enveloping
algebra of T is .o and Q()) = K. The index of .97 equals mg(Y).

By the lemma we see that .~ has g¢-local index p. Since
K(e,) = Q(e3,,), v is unramified from K to Q(e,,,) and so the r-local
index of & is 1. Since the 2-local index is at most 2 [7, Satz 11]
and at infinite primes .97 can only have index 1 or 2, we conclude
that me(y) = ». |G| = p’gr and Gal (Q(&,7,,)/K) = Cpe X Cp.  Since
g = 1 (mod p*) we see that ¢ splits completely in the unique extension
J of K,J CQ(ey,,), Gal(J/K) = C, x C,. It follows, therefore, that
g splits completely in every subfield of Q(c,r,,) of degree p over K
and so T is not realizable in any subfield L of the |G |th roots of unity
with [L: Q(p)] = ».

We next prove that under certain conditions there always exists
a subfield L of the order of |G |th roots of unity which is a splitting
field for % and where [L: Q(%)] = mq().

THEOREM. Let ¥ be a complex irreducible character of a finite
group G of exponent n with mo(X) = 3. Assume either (a) or (b)
below hold:

(2) Q) = Q(en) for some m.
(b) n = p°¢® where p and q are primes, p <.
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Then there exists a subfield L of Q(g,) with [L: Q] = me(X) and such
that L is a splitting field for .

Proof. By a standard reduction using the Brauer-Witt theorem
[8, §2], we may assume that me(y) is a prime power. Since if (b)
holds, mqe(y) is a power of p by [7, Satz 10], we will assume that
me(Y) = p°.

Let K be the subfield of Q(e,) such that KD Q(y), » + [K: Q(:0],
and [Q(c,): K] is a power of p. Let D be the Q(y)-central division
algebra associated with y. By the Brauer-Witt theorem [8, §2],
D g, K is similar to a crossed product (K(+v)/K, 8) where A is a
linear character of a subgroup of G, 8 is a factor set whose values
are roots of unity, and where Gal (K(+)/K) is isomorphic to a factor
group of a Sylow p-subgroup of G.

Q(x) contains a primitive me(y)th root of unity [3, Theorem 1].
Since mqg(x) = 3, Q(x) and K are both totally imaginary. Thus the
nonzero invariants of D are at finite primes.

Suppose (a) holds, so Q(y) = Q(c,.). We may assume m is not
twice an odd number. We have my(y)|m. If r is a prime divisor
of m, r # p, then since, for some d, [Q(¢,): K] = p%, r is unramified
from K to K(y). This implies that the r-local index of D equals 1.
Now let g, ---, q, be the rational primes at which D has nontrivial
local index. Let the g,-local index of D be p%. Then ¢, < ¢ for all
3 and ¢, = ¢ for some ¢ since D has index p°. Suppose ¢, is odd.
By [7, Satz 10] p%|¢, — 1 and so Q(¢,) has a subfield E, with [E,:
Q] = p*. Since ¢, tm, [E.Q(): QGD] = »* and ¢, is totally ramified
from Q(y) to E,Q(x). Let L, = EQ(x). By [3, Theorem 1], &,.;€ Q)
and so L, = Q(x)(«;) where a?ie Q(y). If all of the ¢, are odd, let
a=a,,--a,. If ¢q=2 say,let e =1v"—1a, -+ . We note that ¢,
can equal 2 only if p% =2 and V—1¢Q(y) [7, Satz 11]. If this
happens, then 4|n by [4]. Thus aec@Q(e,). Since a’ e Q(y),
[QU{): Q(x)] = p°. Since ¢, is ramified of degree p* from Q(y) to
QU ), [QG(a): Q] = »° and Q(Y)(e) splits D. Thus Q(¥)(e) is our
desired field.

Assume (b) holds. K(v) is an abelian extension of K generated
by roots of unity. Since (K()/K, 8) has index p° > 1, (K(v)/K, 8)
has g-local index p° and so ¢ is ramified from K to K(v). This implies
that K(y) D K(e,) = K(ep). Since mo(y) = p° =3, if p =2 we see
that v —1e K. In view of [7, Satz 12] this implies that ¢ is the
only prime of @ with the g-local index of (K(+)/K, B) different from 1.

Let ¢,.€ K(v), g1 € K(v). We note that K(v) = Q(¢,,5) since
[Q(cpe0): K] is a power of p. Let (o) = Gal (Q(g,,)/Q(e0)), {z)> =
Gal (Q(e,v,5)/Q(e,0)). Then (oit?y = Gal (Q(g,v,3)/K) for some 4 and j.
Let F, and F, be, respectively, the fixed fields of <¢® and {(z%). Let
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p° and P’ be, respectively, the order, of {(¢®> and <{z’>. Let L, and
L, be, respectively, the subfields of index p° and p' in Q(e,») and
Q(s,5). Then F, = L(e,») and F, = Ly(¢p) and F. N F, = L.L,. Since
g is totally ramified from L,L, to F, and is unramified from L,L, to
F,q is totally ramified from L,L, to K. Thus e¢>1t and ¢ has
ramification degree p°~* from K to K(v).

Suppose [K(e,»): K] = p°. Then (¢'79) fixes K(c,»). Since ¢ fixes
g, 707" fixes &, and so 77" = 1. Thus s =t. But ¢ is unramified
from K to K(¢,») and so the ramification degree of ¢ from K to K(v)
is at most p*°*. Thus ¢ —s=e¢—1t so s =t. This shows that ¢q is
totally ramified from K(¢,») to K(yv). Since ¢ is unramified from K(+)
to K(gyeqr) = Q(&p000), We see that K(e,.) is the maximal extension of
K inside @(&,¢,») in which ¢ is unramified.

Q(e,e) is not a cyclic extension of K by [5]. Thus Gal (Q(e,e,)/K)
is the direct product of two cyclic groups. Let M, and M, be subfields
of Q(&peps) such that M, N M, = K, Q(&,2.0) = M, M,, and M, and M, are
cyclic extensions of K. Since K(e,q) is eyclic over K, ¢ must be totally
ramified in either M, or M, Suppose ¢ is totally ramified in M,.
By [5], since Q(e,q,0) is cyclic over M,, M, is a splitting field for y.
Thus M, splits (K(¥)/K, 8) and so [M;: K] = p°. The subfield L of
M, with [L: Q(x)] = p° is the desired splitting field for ¥. This com-
pletes the proof of the theorem.
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