Pacific Journal of Mathematics

A COUNTEREXAMPLE TO A CONJECTURE ON AN INTEGRAL CONDITION FOR DETERMINING PEAK POINTS (COUNTEREXAMPLE CONCERNING PEAK POINTS)

ALFRED PETER HALLSTROM

Vol. 51, No. 2 December 1974

A COUNTEREXAMPLE TO A CONJECTURE ON AN INTEGRAL CONDITION FOR DETERMINING PEAK POINTS (COUNTEREXAMPLE CONCERNING PEAK POINTS)

ALFRED P. HALLSTROM

Let X be a compact plane set. Denote by R(X) the uniform algebra generated by the rational functions with poles off X and by H(X) the space of functions harmonic in a neighborhood of X endowed with the sup norm. A point $p \in \partial X$ is a peak point for R(X) if there exists a function $f \in R(X)$ such that f(p) = 1 and |f(x)| < 1 if $x \neq p$. Moreover, p is a peak point for H(X) (consider Re f) and hence, by a theorem of Keldysh, p is a regular point for the Dirichlet problem. Conditions which determine whether or not a point is a peak point for R(X) are thus of interest in harmonic analysis. Melnikov has given a necessary and sufficient condition that p be a peak point for R(X) in terms of analytic capacity, f; namely p is a peak point for R(X) if and only if

$$\textstyle\sum\limits_{n=0}^{\infty}2^{n}\gamma(A_{np}\backslash X)=\infty\text{ . }\quad A_{np}=\left\{z;\frac{1}{2^{n+1}}\leqq\mid z-p\mid\leqq\frac{1}{2^{n}}\right\}\text{ .}$$

Analytic capacity is generally difficult to compute, so it is desirable to obtain more computable types of conditions. Let $X^c = C \backslash X$ and

$$I = \{t \in [0, 1]: z \in X^c \text{ and } |z| = t\}$$
.

In this note the following conjecture, which can be found in Zalcman's Springer Lecture Notes and which is true for certain sets X, is shown to be false in general:

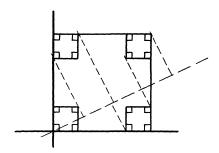
Conjecture. If
$$\int_I t^{-1} dt = \infty$$
 then 0 is a peak point for $R(X)$.

Our counterexample uses Melnikov's theorem and the following lemma:

LEMMA. Given 0 < a < b and $\log b/a < 2\pi$ there exists a set K_{ab} such that $K_{ab} \subset \{z: a \leq |z| \leq b\}$, $\gamma(K_{ab}) = 0$ and $\{t: z \in K_{ab} \text{ and } |z| = t\} = [a, b]$.

The author is indebted to the referee for the following proof.

Garnett in [3] showed that the "Cantor corner square" set K constructed by removing all but the four corner squares of length 1/4 from the unit square, then removing all but the sixteen corner squares of length 1/16 from



these four squares, etc., has zero analytic capacity while the projection on the line y=x/2 is full, i.e., is the same as the projection of the unit square on that line. Thus given 0 < a < b and $\log b/a < 2\pi$ there exists after a suitable rotation, expansion and translation a compact plane set L_{ab} such that $\gamma(L_{ab})=0$, the projection on the x-axis of L_{ab} is $[\log a, \log b]$ and $L_{ab} \subset \{z: \log a \le x \le \log b, \ 0 \le y < 2\pi\}$. Let $K_{ab} = \{e^z: z \in L_{ab}\}$. Let W be a small neighborhood of L_{ab} such that the exponential map is 1-1 on W and $V = \{e^z: z \in w\}$. If g is bounded and analytic on $V \setminus K_{ab}$ then $g(e^z)$ is bounded and analytic on $W \setminus L_{ab}$. Since $\gamma(L_{ab}) = 0$, $g(e^z)$ extends analytically to L_{ab} so g extends analytically to K_{ab} . Thus $\gamma(K_{ab}) = 0$. The other properties required of K_{ab} obviously hold.

To construct our counterexample we choose open sets $U_n \subset A_{n0}$ such that $K_{6/5 \cdot 1/2^{n+1}, 5/6 \cdot 1/2^n} \subset U_n$, and such that $\gamma(U_n) < 1/4^n$. Let $X = \Delta(0, 1) \setminus \bigcup_{n=0}^{\infty} U_n$. Then

$$\sum_{n=0}^{\infty} 2^n \gamma(A_{n0} \setminus X) = \sum_{n=0}^{\infty} 2^n \gamma(U_n) < \infty$$

so 0 is not a peak point for R(X) by Melnikov's theorem. On the other hand,

$$\int_I t^{-1} dt \geq \sum_{n=0}^{\infty} \int_{6/5 \cdot 1/2^n+1}^{5/6 \cdot 1/2^n} t^{-1} dt = \sum_{n=0}^{\infty} \operatorname{Ln} rac{rac{5}{6} \cdot rac{1}{2^n}}{rac{6}{5} \cdot rac{1}{2^{n+1}}} = \sum_{n=0}^{\infty} \operatorname{Ln} rac{50}{60} = \infty \; .$$

If we choose U_n such that $\gamma(U_n) \leq 1/(2^n)^{2n}$ then 0 supports bounded point derivations of all orders for R(X), see [4], so 0 is indeed far from being a peak point for R(X). The question remains whether 0 might be a regular point for the Dirichlet problem. We note that this could only happen if the set of representing measures M_x for R(K) at $x \in X^0$ is not norm compact, see [1].

REFERENCES

1. S. Fisher, Norm compact sets of representing measures, Proc. Amer. Math. Soc., 19 (1968), 1063-1068.

- 2. J. Garnett, Analytic capacity and measure, University of California, preprint p. 87-95.
- 3. ——, Positive length but zero analytic capacity, Proc. Amer. Math. Soc., 21 (1970), 696-699.
- 4. A. P. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis, 4 (1969).
- 5. M. V. Keldysh, On the solvability and stability of the Dirichlet problem, Uspehi Mat. Nauk., 8 (1941), 171-231.
- 6. M. S. Melnikov, Analytic capacity and the Cauchy integral, Soviet Math. Dokl., 8 (1967), 20-23.
- 7. L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Mathematics 50, Berlin, 1968, p. 130.

Received August 18, 1972. This work was partially supported by NSF Grant No. GP-616508.

UNIVERSITY OF WASHINGTON

PACIFIC IOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105 J. Dugundji*

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics

Vol. 51, No. 2 December, 1974

Robert F. V. Anderson, Laplace transform methods in multivariate spectral theory	339			
William George Bade, Two properties of the Sorgenfrey plane	349			
John Robert Baxter and Rafael Van Severen Chacon, Functionals on continuous				
functions	355			
Phillip Wayne Bean, Helly and Radon-type theorems in interval convexity				
spaces	363			
James Robert Boone, On k-quotient mappings	369			
Ronald P. Brown, Extended prime spots and quadratic forms	379			
William Hugh Cornish, Crawley's completion of a conditionally upper continuous lattice	397			
Robert S. Cunningham, On finite left localizations	407			
Robert Jay Daverman, Approximating polyhedra in codimension one spheres embedded in s ⁿ by tame polyhedra	417			
Burton I. Fein, Minimal splitting fields for group representations				
Peter Fletcher and Robert Allen McCoy, <i>Conditions under which a connected</i>	427			
representable space is locally connected	433			
Jonathan Samuel Golan, <i>Topologies on the torsion-theoretic spectrum of a</i>				
noncommutative ring	439			
Manfred Gordon and Edward Martin Wilkinson, <i>Determinants of Petrie</i>				
matrices	451			
Alfred Peter Hallstrom, A counterexample to a conjecture on an integral condition				
for determining peak points (counterexample concerning peak points)	455			
E. R. Heal and Michael Windham, <i>Finitely generated F-algebra</i> with applications				
to Stein manifolds	459			
Denton Elwood Hewgill, On the eigenvalues of a second order elliptic operator in				
an unbounded domain	467			
Charles Royal Johnson, <i>The Hadamard product of A and A*</i>	477			
Darrell Conley Kent and Gary Douglas Richardson, <i>Regular completions of Cauchy</i>				
spaces	483			
Alan Greenwell Law and Ann L. McKerracher, Sharpened polynomial	401			
approximation	491			
Bruce Stephen Lund, Subalgebras of finite codimension in the algebra of analytic	495			
functions on a Riemann surface	493			
Robert Wilmer Miller, <i>TTF classes and quasi-generators</i>	499			
partial order is isolated	509			
Isaac Namioka, Separate continuity and joint continuity	515			
Edgar Andrews Rutter, A characterization of QF – 3 rings	533			
Alan Saleski, Entropy of self-homeomorphisms of statistical pseudo-metric	333			
spacesspaces	537			
Ryōtarō Satō, An Abel-maximal ergodic theorem for semi-groups	543			
H. A. Seid, Cyclic multiplication operators on L_p -spaces	549			
H. B. Skerry, On matrix maps of entire sequences	563			
John Brendan Sullivan, A proof of the finite generation of invariants of a normal	303			
subgroup	571			
John Griggs Thompson, Nonsolvable finite groups all of whose local subgroups are	J , 1			
solvable, VI	573			
Ronson Joseph Warne, Generalized $\omega - \mathcal{L}$ -unipotent bisimple semigroups	631			
Toshihiko Yamada, On a splitting field of representations of a finite group.	649			