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CHARLES R. JOHNSON

Coefficient-wise multiplication was introduced by Hadamard
and has been studied for certain square matrices by I. Schur
and later authors. For A€ M, (C), the = by » complex matrices,
this paper examines the Hadamard product of A and A*. Upper
estimates are given for the largest characteristic root of this
necessarily Hermitian product, and three conditions on A suffi-
cient for the product to be positive definite are presented.

1. Preliminaries. If A= (a,;) and B = (b,;) are elements of M,(C),
the Hadaomard product [see 4, 5, 6] of A and B is the matrix A-B =
(a,;0:;) € M,(C). Let X, denote the class of Hermitian positive definite
elements of M,(C). I. Schur [7] showed that ¥, is closed under
Hadamard multiplication and this fact was further investigated in
[5]. Fiedler [1] provided the result that Ae X, implies Ao A~ = L.

Whereas the usual product of 4 and A* is Hermitian and positive
semidefinite, the Hadamard product Ao.A* = f(A) is necessarily Her-
mitian but not necessarily positive semidefinite. We first develop
several facts, some of which are of interest by themselves, with which
to study f(4). Theorem 1, for instance, generalizes Schur’s result.

NoTATION 1. We shall adopt the following additional notational
conveniences. For Ae M, (C), H(A) = (A + A*)/2, the Hermitian
part and S(4) = (4 — A*)/2, the skew-Hermitian part of A, and let 17,
denote the class of Ae M,(C) for which H(4A)e X,. Also let F(4) =
{w*Ax|ze C*, x*x =1}, the field of values and F,.,(4)={x*Ax|0£2¢c C"},
the angular field of wvalues of A. Starting with the upper
right and proceeding counterclockwise, number the interiors of the
quadrants of the complex plane @, @, @, Q,. If S and S, are two
sets in the complex plane their sum S+ S, = {& + x|z € S, 2,€ S}
and their product SS, = {xx,|x€ S, 2,€ S,} and denote the closure of
S with respect to the Euclidean norm by S. Now it is clear that
Aec I, if and only if F,.(A4) Cinterior (@, UQ,). Denote by o(4) the
set of all characteristic roots of A M,(C), and for Hermitian A, B
let A>B mean A — BeX,. X' will denote the mth Hadamard
power of Xe M,(C) and Je M, (C) will be the Hadamard identity, the
matrix of all ones. D will always be a diagonal matrix. It is well
known that o(4) & F(4) & F,..(4) and the latter is a positive convex
cone. Both F' and F,,, are subadditive as set-valued functions of a
matrix argument.
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THEOREM 1. If He X, Aec M, (C), then F,,,(HoA) & F,,.(4).

Proof. Since He X, we may write H = _B*B where B is non-
singular. The 1, j-entry of Ho A is then 3%, b,;b,;a,; so that we have

> bubyaTx;

n
15,k=1

¥ (Ho A)x

Il

<,

yi Ay, where y} = (buZ, -+, buT.) .

n
k=1
Since F,,.(A) is a positive convex cone and since B is nonsingular,

the latter sum is in F,,,(4) when x 0. We then conclude
2*(Ho A)x e F,,,(A) which completes the proof.

CoROLLARY 1. If A, Be M, (C) and F,..(4) S Q,, then
F,,(AoB) S F,o(B) + tF e (B) .

Proof. F,..(4) & Q, if and only if H(A)e 2, and 1/iS(4) = Ke
2, Now AoB = H(A)oB + iK+ B so that

Fou(AoB) S Fou(H(A) o B) + iF.uy (Ko B)

because of the subadditivity of F,,,. By Theorem 1 it then follows
that F,,,(A°B) & F,,,(B) + iF,..(B) as the corollary asserts.

COROLLARY 2. If A, Be M,(C) and F,.,(4) S Q, and F,.(B*) <
Q,, then A-Bell,.

Proof. Since F,,.(B*) € @, F,..(B) = @, and since F,..(4) S @,
we have by Corollary 1 that Fi.i(AoB) S Fung(B) + 1Fug(B) & Qi +
1Q, = Q, + Q, < interior (@, U Q,). That F,,.,(A - B) < interior (Q, U Q,)

means Ao Be ll, and completes the proof.

REMARK. AoBell, if and only if H(A)o H(B) + S(4)°S(B) > 0
and thus f(4)e %, if and only if H(A)® > S(4)®.

Proof. An easy computation shows that H(A - B) = H(A)> H(B) +
S(A) - S(B) so that the first part of the remark follows. The second
portion then follows by taking B = A* and thus S(B) = — S(A4).

THEOREM 2. Suppose A, De M,(C) and D is a nonsingular
diagonal matriz. Then f(A)e 2, if and only if f(DA)eZX,.

Proof. Since ¥, is closed under congruence, the statement of the
theorem follows from the observation that f(DA) = DAcA*D* =
D(A- A*)D* = Df(A)D*.
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2. The largest eigenvalue of A-A*, Since f(A4) is Hermitian,
o(f(A)) is real. Employing a result of [4] we next estimate the largest
member of o(f(4)) which is necessarily nonnegative.

NotaTioN 2. Denote the numerical radius of A e M, (C) by r(4) =
maX,er |tl. If 0(4) is real, let r,(4) = max,c,n A and X\, (4) =
min,e, M. In case A is Hermitian, »(4) = max (A, (4), | N.(4)]}.

LEMMA 1. [4]. If A, Ne M, (C) and N is normal, then
HNoA) < +(N)r(4) .

THEOREM 3. For Ae M, (C), we have
r(Ao A*) = r(H(A))® + r(S(4))* .

Proof. Since f(A) = H(A)® — S(A)®, it follows that »(f(4)) =
r(H(A)® — S(A)7) = r(H(A)®) + r(—S(4)"*) = r(H(A))* + 7(S(4))>. The
latter inequality is from the lemma and completes the proof.

COROLLARY 3. For Ae M,(C),
Nar(A 0 A%) = Ny(H(A)) — M(S(A)Y)

Proof.  Since My(f(4)) = r(f(A)), (H(A))* = ry(H(A)), and
r(S(A))* = —Mu(S(4))

this follows directly from Theorem 3.

ExaMPLE. The estimates of Theorem 3 and Corollary 3 are sharp.

Equality may be attained even for nonHermitian matrices. Let A =

[_% ~ﬂ; then F(A) is the unit closed circular disk and thus »(4) =

FH(A) = 7(S(A) = 1. Also f(A) :[_} 1 | so that r(r(4) =
Mi(f(4)) = 2 = r(H(A)) + 7(S(A))" = Mu(H(A)) — NMa(S(A)).
Although we will not do so here, estimates for \,(4A°A*) may

straightforwardly be obtained from the results of the next section.

3. Conditions sufficient for A-A*¢c ¥,. We next study three
rather different sufficient conditions (Theorems 4, 5, and 6) for the
Hermitian matrix f(A4) to be positive definite.

Noration 8. If Xe M,(C) denote the union of the Gersgorin
circles [3] obtained from the rows of X by G.(X) and the union of
the Gersgorin circles obtained from the columns of X by G.(X).
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Let G(X) = G(X) N G,(X). Then o(X) S G(X), [3], and 0¢ G.(X) is
the assumption of row diagonal dominance while 0¢ G, (X) is column
diagonal dominance. We shall call a matrix T = (¢;;) € M.(C) com-~
binatorially triangular if for all pairs ¢ =+ j either of ¢; or ¢;; is 0.

THEOREM 4. If Ae M,(C) and there is a diagonal matriz De
MAC) such that F(DA) < Q,, then f(A)cZ,.

Proof. If there is such a D, then it must be nonsingular and by
Theorem 2 it suffices to prove the statement of this theorem for
D = 1. By letting B = A*, the hypothesis of Corollary 2 is satisfied
in our case and we may conclude f(4) = Ao A*e Il,. But since f(4)
is Hermitian it is then in ¥, which completes the proof.

REMARK. It is an easy observation that f(e?4) = f(4). By
Theorem 3 this means that if F,.,(4) & Q, where @ is any rotation
of @, then f(A)e ..

LEMMA 2. If 0¢ G,(A) U G.(A), then 0¢ G(f(4)).

Proof. Since f(A4) is Hermitian, G(f(4)) = G.(f(4)) = G.(f(4)).
Since 0¢ G,(4) UG (A), |au] > Dz lail and {a;| > 3w lail, for all
1=1, -+, n. Thus

an = laul > (Slasl )(Sanl) 2 3 lagllaal = 30|
J#i J# iFL g
which means that 0¢ G(f(4)).

LEmMmA 8. If 0¢ G.(A), there is a positive diagonal matriz D
such that 0¢ G.(DA) UG, (DA).

Proof. Since D diagonal and invertible and 0¢ G,(4) imply 0¢
G.(D4), it suffices to show that under the assumption a D may be
found such that 0¢ G,(DA). This may be done by an M-matrix argu-
ment [2]. Without loss of generality we may assume A is real with
positive diagonal entries and nonpositive off-diagonal entries. Our
assumption, 0 ¢ G,(4), then implies that A and thus A* are M-matrices.
By [2, Theorem 4.3] this implies the existence of a positive diagonal
D such that 0¢ G.(A*D) = G(DA). For this D, then, 0¢ G,(DA) U
G.(DA) as desired.

THEOREM 5. If Ae M, (C) and there is a diagonal matriz De
M, (C) such that 0¢ G(DA), then f(A)eZ,.
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Proof. Again by Theorem 2 it suffices to prove the weaker
statement that 0¢ G(A) implies f(4)e ¥,, and since f(4) = f(4*) we
may assume without loss of generality that 0¢ G.(4). Then by Lemma
3, there is a positive diagonal matrix D such that 0¢ G(DA) UG, (DA).
According to Lemma 2 this implies 0¢ G(f(DA)). Since f(DA) is
Hermitian with nonnegative diagonal entries, 0¢ G (f(DA4)) implies
G(f(DA)) < interior (@, U @,) and that all eigenvalues of f(DA) are
positive. This means that f(DA)e ¥, and by Theorem 2 that f(4) e
Y. which completes the proof.

THEOREM 6. If A = (a;)e M, (C) is combinatorially triangular
and a; 0,1 =1, +«+, m, then f(4)e2,.

Proof. Under the hypothesis a,;a; is 0 if ¢ # 7 and positive if
¢ = 7. This means f(A) is a positive diagonal matrix and, therefore,
a member of Y.
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