
Pacific Journal of
Mathematics

SHARPENED POLYNOMIAL APPROXIMATION

ALAN GREENWELL LAW AND ANN L. MCKERRACHER

Vol. 51, No. 2 December 1974



PACIFIC JOURNAL OF MATHEMATICS
Vol. 51, No. 2, 1974

SHARPENED POLYNOMIAL APPROXIMATION

A L A N G. L A W AND A N N L. MCKERRACHER

In 1951, W. Wolibner showed that a real continuous
function on a closed interval can be uniformly approximated
by a polynomial which interpolates at prescribed points and
which has a uniform norm agreeing with the function's.
This fit can be sharpened to include matching of some relative
extrema as well. The paper characterizes functions that
permit Simultaneous Approximation and Interpolation which
is Norm-Preserving and Extrema-Matching over the entire
interval except, perhaps, for a subset of arbitrarily-small
diameter.

1* Introduction* The classical Weierstrass Theorem of (uniform)
polynomial approximation to real, continuous functions has been
generalized in many ways [2, 3]; one type of extension concerns
approximations in various normed linear spaces [3]. However, if the
element to be approximated remains in the space of continuous func-
tions on a closed and finite interval, and if the uniform approximation
is by polynomial, then the generalizations involve "closeness" of
approximation. As an example of this second type, the Walsh result
of 1935 [2] shows existence of a uniformly-good polynomial approxi-
mation to a function that also interpolates the function at prescribed
points. Deutsch and Morris [3] have pointed out that W. Wolibner
[4] extended this last result in 1951; he, in essence, proved existence
of a polynomial which (uniformly) approximates a continuous function,
and which interpolates the function, and whose (uniform) norm is
equal to that of the function on the prescribed interval. Theorem 1
shows that such a fit can easily be sharpened to include matching of
relative extrema too; that is, finitely-many relative extrema of the
function are relative extrema of the approximating polynomial (where
a minimum corresponds to a minimum and a maximum to a maximum,
of course).

If / has an infinite number of relative extrema, no polynomial
can match at all of them—otherwise, the derivative of the polynomial
would have an infinite number of zeros. However, some continuous
functions have approximating polynomials that match all extreme
points except those over a closed set of arbitrarily-small diameter;
Theorem 2 shows that a function has such approximating polynomials
when, and only when, the points where the function achieves its
extrema constitute a (countable) convergent sequence.

Throughout the discussion, the space considered is the set C[a, b]
of continuous, real-valued functions endowed with the max norm,
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|| ||, on the closed and finite interval [a, b].

2* Polynomial approximations which match extrema*
Wolibner's theorem actually shows that a finite number of points in
the plane, for which the ordinates of any two adjacent points are
distinct, can be interpolated by a polynomial that preserves mono-
tonicity of the piecewise-linear function, φ, connecting the points. It
is clear in the proof of this theorem that the polynomial constructed
not only is monotonically increasing or decreasing where φ is, but
is a uniform approximation to φ as well. Now, any member of
C[a, b] can be approximated arbitrarily closely by the piecewise linear
function which connects certain points on the graph (a sufficient
number with equally-spaced abscissae, for instance). If to such a set
of points there are adjoined, if necessary, (i) a point (xo,f(xo)) where
\f(xo)\ = 11/11, and (ii) intermediate points so that any two adjacent
points in the final set will have distinct ordinates, then Wolibner's
development for the corresponding polygonal function gives:

THEOREM 1. Suppose f is a member of C[a, b] and that ^(1 ^
i rg m) are m given values in [α, 6]. Let Sj(l ^ j ^ k) be k points
at which f has relative extrema. Then, for any positive ε, there exists
a polynomial p such that:

( i ) I l / - P l | < e ,
(ii) p(ί4) = f{U) for 1 rg i £ m,

( i ϋ ) H P I I = 11/11, a n d
(iv) p(Sj) = f(Sj) and p has a relative extremum at each s3- for

1 ^ j ^ k (a maximum of p corresponds to a maximum of f and a
minimum to a minimum).

Thus, any / in C[a, b] has a polynomial that simultaneously
approximates, interpolates, preserves norm and, further, matches
extrema at a finite number of points.

DEFINITION. Suppose / is a member of C[a, b], and let X be a
given subset of [a, b], / i s said to have property S on X if for any
ε > 0 and for any prescribed finite subset, Γ, of [a, b] there exists a
polynomial p such that:

( i ) | | / - p | | < e ,
(ii) p(t) = f(t) for teT,
(i i i ) I I P H = | |/ | | , a n d
(iv) at each point of X where / has a relative extremum, p

interpolates / and p has a relative extremum (of the same type)
there.

Wolibner's result is that any / has property S on the null set;
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Theorem 1 can easily be used to show that / has property S on
[α, b] if, and only if, the set of points in [α, b] at which / has relative
extrema is finite. The next theorem characterizes those functions in
C[a, b] which have property S on sets X = [a, b] — V, where V is a closed
set with arbitrarily-small diameter (that is, d(V) = s u p ^ ^ | x — y | is
arbitrarily small).

THEOREM 2. For any member, f of C[a, b], the following two
assertions are equivalent:

( a ) corresponding to any given ε > 0, there exists a closed subset
V, with d(V) < ε, for which f has property S on [a, b] — V;

(b) the points of [α, b] where f has relative extrema constitute
a (countable) convergent sequence.

Proof. Suppose, first, that the relative extrema of / occur only
at {xu x2, #3, •} and let x0, in [α, 6], denote the limit of this sequence.
For e > 0 the set V = [x0 — ε/3, x0 + ε/3] n [α, b] has diameter less
than ε and, by Theorem 1, / has property S on [α, b] — V.

For the converse, let E denote the set of points in [α, b] at which
/ has relative extrema. If E is finite, there is nothing to prove; so,
suppose that E is infinite. Let {Vn}, n }> 1, be a sequence of closed
subsets of [a, b] such that / has property S on [α, b] — Vn, and such
that d(Vn) < 1/n for n Ξ> 1. Since E is infinite, {Vn} has the finite
intersection property; thus, V= ΠίΓ=i Vn is nonempty. But VcVn

implies that d( V) — 0 — consequently, V = {x0} for some xQ in [a, b].
The relation

E = {EC) V) U i # n ([α, 6] - ή Fft)

= {E Γ\ V) \J \J {E Γ\ ([a, b] - V.)}

shows that E is a countable union of finite sets and, hence, is countable.
Finally, since each Vn contains both xQ and infinitely-many elements
of E, and because d( Vn) —> 0, x0 must be the limit of the sequence E.

It is, perhaps, not surprising that Theorem 2 no longer holds if
diameter is replaced by (Lebesgue) measure /*. Of course, (b) would
still imply (a) since μ(V) = d(V); however, the following example
shows that the converse would fail. For each n = 1, 2, 3, •••, let
(an, bn) be an open, middle-third interval removed from [0, 1] in the
construction of the Cantor ternary set K. Let g(x) be defined as
follows: g(x) = 0 for xe K, g(x) = x — an if an < x < (an + bn)/2 and
g(x) = bn - x if bn > x ^ (an + 6Λ)/2, for u ^ 1. It is easy to check
that g is in C[0, 1], that it attains its relative minima on K and that
it has a relative maximum at (an + bn)/2 for each n ^ 1. Thus, the



494 ALAN G. LAW AND ANN L. McKERRACHER

corresponding set at which g has relative extrema is uncountable.
On the other hand, for any N ^ 1, g has only a finite number of
extrema on JJn=i (a*,, bn)', hence, with VN = [0, 1] - Uί=i (&*, K), 9 has
property S on X = [0, 1] — F^ and μ(VN) can be made arbitrarily
small.
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