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Let R be a ring with minimum condition on left or right
ideals. It is shown that R is a QF-3 ring if and only if each
finitely generated submodule of the injective hull of R,
regarded as a left B-module, is torsionless. The same approach
yields a simplified proof that R is quasi-Frobenius if and
only if every finitely generated left R-module is torsionless.

A ring with identity is called a left QF-3 ring if it has a (unique)
minimal faithful left module, and a QF-3 ring means a ring which is
both left and right QF-3. This class of rings originated with Thrall
[9] as a generalization of quasi-Frobenius or QF algebras and has been
studied extensively in recent years. Quasi-Frobenius rings have many
interesting characterizations and in most instances there exists an
analogous characterization of QF-3 rings at least in the case of rings
with minimum condition and often for a much larger class of rings.
It is well known that a ring with minimum condition on left or right
ideals is a left QF-3 ring if and only if the injective hull E(;R) of
the ring R regarded as a left R-module is projective. Moreover, in
this case R is a QF-3 ring (cf. [6] and [8]). For semi-primary or
perfect rings; however, the situation is somewhat different. Namely,
a perfect ring is a left QF-3 ring if and only if E(;R) is torsionless.
A module is called torsiomless if it can be embedded in a direct
product of copies of the ring regarded as a module over itself. In
this case E(zR)need not be projective and R need not be right QF-3
(cf. [3] and [8]). However, a perfect ring is QF-3 if and only if both
E(zR) and E(R;) are projective (see [8]). In this note, it is shown
that if R isleft perfect ring, E(zR) is projective if and only if each
finitely generated submodule of E(.E) can be embedded in a free
R-module. For a ring with minimum condition on left or right ideals
this latter condition is equivalent to each finitely generated submodule
of E(zR) being torsionless. Thus in that case QF-3 rings may be
characterized by this weaker condition. The technique of proof also
yields a much simplified proof of a characterization of QF rings given
by the present author in [7]. Namely, a ring with minimum condition
on left or right ideals is QF if and only if each finitely generated
left module is torsionless. Indeed, the characterization of QF-3 rings
given here may be regarded as the analog of that result.

THEOREM 1. Let R be a left perfect ring. E(zR) is projective if
and only if each finitely generated submodule of E(zR) can be embedded
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wn a free R-module.

Since flat modules over a left perfect ring are projective, this
result is immediate from the following lemma. For a discussion of
left perfect rings see [1].

LEMMA 2. Let I be an injective left R-module. If each finitely
generated submodule of I can be embedded in a flat R-module, then
I is flat.

Proof. By [2, Exercise 6, p. 123] it suffices to show that for any
@y, -+, 0, € I satisfying a linear relation 3™, ra;, =0 with r eR,
there exists a positive integer n and elements b;¢ I, s;;€ R such that
foreach1<i<mand 1<j5=<n

n m
(*) aZ:Z}s”bi, 21.7”181-5:0-
Jj= i=

Let A be the submodule of I generated by a,, ---, a,. By hypothesis
A is a submodule of a flat R-module F and so by [2, Exercise 6,
p. 123] there exists an integer » and elements ¢; e F, s;;€ R such that
foralll<i<mand 1<j<n

3

m
(**) @ =386, X718 =0,
£

?

Since I is injective the inclusion map of A into F can be extended
to an R-homomorphism « of F into I such that (a)a = @ for all ac A.
Setting b; = (¢;)a and applying a to the first half of (**) shows that
(*) can be satisfied for any such choice of a,, ---, a,. Thus I is flat.

COROLLARY 3. If R is a ring with minimum condition on left
or right ideals, the following conditions are equivalent.

(a) R is a QF-3 ring.

(b) Ewery finitely generated submodule of E(zR) can be embedded
m a free R-module.

(¢) Ewvery finitely generated submodule of E(zR) is torsionless.

Proof. In view of the introductory remarks and Theorem 1 it
suffices to show that (c) implies (b). Let M be a finitely generated
submodule of E(zR) and M* = Hom, (M, R). It suffices to find
fi oo, fne€M* such that ~,Kerf, = (0) since the map f:M—
D, R via m—(f.(m), ---, f.(m)) will then give the desired embedding.
Since M is torsionless, (0) = N,Ker f with fe M*. If R satisfies
the minimum condition on left ideals such f, ---, f. exist since M
being finitely generated satisfies the descending chain condition on
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R-submodules. If R satisfies the minimum condition on right ideals
then since M is finitely generated M* is isomorphic to a submodule
of a finitely generated free right R-module and hence is finitely
generated. (See [5, p. 66].) If f, ---, f. generate M*, they have the
desired property since M is torsionless.

REMARK. Condition (b) does not imply condition (a) for rings
with maximum condition since any commutative integral domain which
is not a field satisfies (b) but is not QF-3.

COROLLARY 4. If R is a left and right perfect ring then R is
a QF-3 ring if and only if every finitely generated submodule of
E(zR) and E(Rj) is isomorphic to a submodule of a free R-module.

Proof. In view of the introductory remarks this result is im-
mediate from Theorem 1 and its right hand analog.

The next theorem and its corollary were proved in [7].

THEOREM 5. Let R be a left perfect ring. R is a quasi-Frobenius
ring if and only if every finitely generated left R-module is isomorphic
to a submodule of a free R-module.

Proof. This result follows from Lemma 2 and the fact that QF
rings are characterized by the property that every injective module
is projective [4, Theorem 5.3].

The next corollary follows from Theorem 5 in exactly the same
manner that Corollary 3 follows from Theorem 1.

COROLLARY 6. If R is a ring with minimum condition on left
or right ideals, the following conditions are equivalent.

(a) R is quasi-Frobenius.

(b) Every finitely generated left R-module is isomorphic to a
submodule of a free R-module.

(¢) Every finitely generated left R-module is torsionless.
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