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The purpose of this paper is to prove a maximal ergodic
theorem for Abel means of a strongly measurable semi-group
I'={T,;t = 0} of linear contractions on a complex L,-space
satisfying | T.f| = c a.e. for any ¢ = 0 and any integrable f
with |f| <c¢ a.e. Applying the obtained maximal ergodic
theorem, individual and dominated ergodic theorems for Abel
means are also proved. These results extend results obtained
by D. A. Edwards for sub-Markovian semi-groups.

2. The maximal ergodic theorem. Let (X, &2, tt) be a o-finite
measure space and L,(X) = L,(X, <z, 1), 1 < p < oo, the usual (com-
plex) Banach spaces. Let I" = {T,;t = 0} be a strongly measurable
semi-group of linear contractions on L(X) with || ./ |l. = || f]l. for
any fe L(X)N L.(X) and any t = 0. By the Riesz convexity theorem
I may be considered as a strongly measurable semi-group of linear
contractions on L,(X) for each p with 1 < p < . It is then known
(cf. [4], p. 686) that for each fe L,(X) with 1 < p < oo, there exists
a scalar function T,f(x), measurable with respect to the product of
Lebesgue measure and g, such that for almost all ¢, T,f(z), as a
function of z, belongs to the equivalence class of T,f and such a
measurable representation is uniquely determined except for a set of

the product-measure zero. Moreover, since the integral we‘“Tt fdt

exists for any A > 0, it follows from Theorem I11.11.17 oof [4] that
there exists a p-null set E(f), dependent on f but independent of A,
such that if x¢ E(f) then ¢ *T,f(x) is integrable on [0, =) for each

» > 0 and the integral Sme‘“T, f(z) dt, as a function of x, belongs to
0

)

the equivalence class of S e T, f dt. Thus if we denote the integral

S“’e—uth dt by R,f then Swe‘“Tt f(z)dt gives a representation of
0 0

R,f, and hence, from now on, we shall write R,f (x) for re‘” T.f(x)dt.
0
Let fe L,(X) and a > 0. Following Chacon [1], we define

fe7(@) = [sgn f () min (a, | F()]),
S (@) = [sgn f@))( f ()| — min (g, | f(@)]),
f*@) = sup [AE:f(w)]
and
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E*(a) = {z; f*(x) > o},

where sgn f(x) = f(x)/| f(x)] if f(x) = 0 and sgnf(x) =0 if f(x) = 0.
We are now in a position to state the main theorem of this paper.

THEOREM 1. If fe L(X), 1 £ p < oo, then for any a > 0 we have

SE*(a)(a —1fhdp = S‘f‘” Ide .

For the proof of Theorem 1 we shall need the following lemma,
whose proof is given in [7].

LEMMA. Let 7 be a positive linear contraction on L,(X) satisfy-
ing | 7flle | f 1l for any fe L(X) N Lo(X), let fe L(X) with 1 =
p < co and let @ > 0. Define

e*(a) = jlsc; sup *(1 -~ 7) i r"r"f(x)} > a} .
0<r<1 k=0

Then we have

S (@ — [/ Pdp = Slfﬂ+ e .

Proof of Theorem 1. For each A > 0 and each positive integer
n, define

BPf = = 5 e H T, f
n k=

k=0

We shall first prove that for any fixed » > 0,
(1) liin | B.f — R{"fll, =0.

In fact, if ¢ > 0 then choose a positive real number « such that

e—la

<e.

(2) S:ueﬂvnf|udt<:e and

Let k(n) be the positive integer such that

(3) Felm) o Km) A1
Vs n

Then
| B.f — Ry, < Hsze—thtf di — % :(;n: e"iklnTklanp

+e+ L S e,

N k=kin)+1
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Since 1/n S ymme ™™ Z1lne /(1 —e*) by (3) and lim,n(l —
e 4"y = ), it follows from (2) that for N, sufficiently large enough
and #» = N, we have

(4) 1 S pwm e,
V]

k=k(n)+1

Let

A

t< k+1
n

g.(t) = e ™ for k
n

and

T#f = Tyuf for X<t kL,
n n

Since I" = {T; t = 0} is strongly continuous on (0, =) (cf. [4], Lemma
VIIL.1.3), lim, || 9, &) T"f — e *T,f ||, = 0, from which it follows that
limng e Tof — g.(t)TF]l, dt = 0, and hence (1) follows.

Since lim, n(l — ¢#") = A, (1) implies at once that lim, [| AR,/ —
1 —e*) e T, fll, =0. Let @ be the set of all positive
rational numbers. By the Cantor diagonal argument there exists a
subsequence {n,} such that for any re Q,

MR f(z) = lm (1 — e74%) 3 e~ #1% Ty, f(2) ae.
% k=0
Hence if we let
Fi(w) = sup (L—e7i) 35 et £1(a)
0<2< o0 k=0

where ¢, denotes the linear modulus [2] of Ty, then [AE,f(x)| =
lim inf, f#(x) a.e. for any A€ Q. Since the mapping A—\ Swe‘”T, fx)dt
1s continuous for almost all ze X, it follows that supo<3<:]le f@) =
SUP;cq ]/\S:e‘“T,f(x) dt| a.e., and thus

fH(@) < liminf f#(x) a.e.

Let ef(a) = {&; f*(®) > a}. It is clear that E*(a) climinf, ef(a), and
hence Fatou’s lemma and the above lemma imply that

[ @ papstimint | (@ 1 s (50,
and the theorem is proved.

3. Applications, It is known (cf. [3]) that (1) if 1 <p <o
and fe L,(X), then the function *f defined by
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*flo) = Sup —Hz T.7 (x) dt!

isin LX) and {|*fIl, < p/(p — V|| £ l,; (i) for every fe L,(X) with
1 < p < oo, the limit

. 1 f(°?
l1m——S T,7(x) dt
bteo b Jo

exists and is finite a.e. In this section we shall prove the exact
analogues for Abel means.

THEOREM 2. If1 < p < o and fe L, (X), then f* < o a.e. In
particular 1f 1 < p < oo, then f* 1is in Ly(X) and

e =

p
L -

Proof. It follows easily from Theorem 1 that for any a > 0,
mE @)= =] (flde< e,
Q JEa)

from which we observe that f* < « a.e. The second half of the
theorem follows from Theorem 2.2.8 of [6]. The proof is complete.

THEOREM 3. For any fe L(X) with 1 < p < oo, the limit
(5) lim AR, f(x)
210

exists and 1is finite a.e.

Before the proof we note that if the semi-group I" = {T}; ¢ = 0}
is sub-Markovian (for definition, see [5]) and of type C, then the
above theorem has been proved by Edwards [5].

Proof. For 1< p < oo, LX) is reflexive and thus it follows
from Corollary VIIL.7.2 of [4] that the functions f of the form

F=h+3U- T,

where T,h = h for all ¢t = 0, is dense in L,(X) in the norm topology.
Since

)\’Swe—tht(I - Tti)gi(x)dt = Aetti Stie"—”Ttgi(ﬂG)dt

Ml — e“i)re‘“Ttgi(x)dt ae.
0
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for each 7, and

lim M“igtie‘“th(x)dt =0 a.e.

210

for each ¢, it follows from Theorem 2 that

lim LSO e T — T, )g2)dt = 0 ae.
for each 7. Thus we observe that the limit (5) exists and is finite
a.e. for any function f in a dense subset of L,(X) in the norm to-
pology. Hence the Banach convergence theorem [3] and Theorem 2
imply that the limit (5) exists and is finite a.e. for any fe L,(X).
Since L,(X)N L(X) is dense in L,(X) in the norm topology, the
Banach theorem and Theorem 2 are also sufficient to prove that the
limit (5) exists and is finite a.e. for any fe L,(X). This completes
the proof of Theorem 3.
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