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In this note the linear space E of entire sequences and
various subspaces are considered. The fact that £ represents
the space of entire functions is emphasized by determining
subspaces in terms of order and type. Matrix maps between
the subspaces are characterized, and a related result and an
example are also given.

1. Subspaces of E determined by order. First we recall that
if M(r) = max| f(2)| on the circle |2| = r, then the order of the
entire function f is o = lim sup [(log log M(7))/log r}, and its type is
7 = lim sup [(log M(r))/r?], assuming 0 < . If f(2) = >}7,2" is an
entire function, then it has finite order p if and only if ¢=
lim sup, [» log n/log (1/|x,[)] is finite, and then p = #([1], p. 9).

DEFINITION 1.1. We say the complex sequence x = {x,}° is ana-
Iytic if the corresponding power series >, z,2* has radius of con-
vergence r(x) > 0. « is an entire sequence if () = oo, and its order
and type are those of the power series.

DEFINITION 1.2. For each pe [0, «), let O(0) be the set of entire
sequences of order not exceeding 0. For each pe (0, ], let O'(0) be
the set of entire sequences of order less than p.

DEFINITION 1.8. If 0 < o < =, let p* be the class of real se-
quences {0,};> such that p,\,0 and p, > p. If 0 <p < o, let 0~ be
similarly defined, but with o, /p and 0 < p, < 0.

DEFINITION 1.4. Let & = {«,}° be a complex sequence with no
zero-terms, and let s(a) = {complex x| a,x, — 0}.

If we define ||z ||, = sup | a,x, |, then (s(a), || - |l.) is a BK space
([8], Satz 5.4).

We will now characterize those matrices 4 = (a,,) which map
s(a) — s(B). If f is a continuous linear functional on s(a), then f can
be represented in the form f(x) = >, ¢, .., Where >, |c,| < o ([8],
Satz 5.4). It is easily shown that the coefficients ¢, in this represen-
tation are unique, and that || f|| = 3. |¢.|. Suppose A maps s(a) —
s(B8). Define f,(x) = B, > @i®. It is known ([7], Corollary 5, p. 204,
or [8], Satz 4.4) that a matrix map between FK spaces is continuous,
and f, = B.P,° A (where P, is the nth projection map), so f, is a
continuous linear functional on s(a) with norm [|f,|] = 3| Ba@ui/tti |-
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B.Y.— 0 because y = Axe s(8). It follows that for each 2 in s(a),
f.(2) — 0 and sup, [f.(x)]| < o, so the uniform boundedness principle
gives

(1.5) sup ; | Bularfaty| = M = oo,

Because ¢* (the sequence having 1 in the kth coordinate and 0’s
elsewhere) is in s(a), we also have

(1.6) Aeé* = {a,.}, = the kth column of A is in s(B) for each k.

We show that the necessary conditions (1.5) and (1.6) are also suf-
ficient for A to map s(a) into s(B). If xes(a), then a2, — 0, so
Sulaus,] = Q) Sl aw/ar] < o by (1.5). Thus Ax is defined on
s(a). Now let ¢ > 0 be given and choose N so that k> N=|a,z,.] <
¢/M. Then

9] < 3 lawn] + M) 3 lawfal

and (1.6) and (1.5) give
limsup [B.Y. | £ 0+ (/MM = ¢ .

It follows that ¥y = Axe s(8). We have proved

THEOREM 1.7. In order that A maps(a)— s(B) it ts necessary
and sufficient that

(1.5) SUp 3. | Butw/ay| = M 7 o
and
(1.6) each column of A is in s(B)

be satisfied.

THROREM 1.8. Let {af}, and {8}z, be sequences of sequences
o’ = {aily., and B = {Bi}7., with the property that k> j = s(a*) &
s(a?) and s(B¥) < s(8?). Let S = N s(a?) and T = N s(B). Finally,
we ask that for every j there ewists k> § such that 3. |ai/ak]| < oo,
and that for every i there exists < > 1 such that B./B8,— 0. Then
the matriz A maps S— T if and only if

(1.9) for each i there exist j and M such that | Bia,./al] £ M for all n, k.

Proof. First, we remark that s(a) < s(8) if and only if
lim sup | 8./, | < . Clearly, the set {¢*, £ =0, 1, ...} is a Schauder
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basis for s(a), so it follows ([9], Satz) that A maps S — T if and only
if for every ¢ there is a j such that A maps s(a’) — s(8%), i.e., if and
only if both of

(1.10) for each 7 there is a j such that sup >, |Bia./al] < o,
3 k

(1.11) {a,},€ T for each k,

hold. It is obvious that (1.10) implies (1.9). Conversely, let 7 be
given and let j and M correspond to ¢ as in (1.9). Choose r > j so
that 3. laj/a;| < . Then

S Baulai] = 2 | Biaulall-| aija;] = M3 |aija;| < oo,

so (1.9) implies (1.10). To complete the proof we need only show
that (1.9) implies (1.11). Let 4 be given and choose ~ > ¢ so that
i/8L— 0. Let j and M correspond to < as in (1.9). Then |Rla..] <
M|aj| for every m, so |Bia.| = |Bi/G. I Mlall—0 as n— o, and

{a/nk}n € S(Bi)'

Now let {0;} e ot and let «af = w"/rs. It is readily verified that
0(0) = N s(@).

THEOREM 1.12. The matriz A maps O(0) — O() if and only if

(1.138)  for each t > p there exist r > 0 and M such that
w1 ., |(1/EH) = M for all n, k.

Proof. Let {¢,}e ¢ and set g% = »n**, so that O(¢) = N s(89).
The hypotheses of Theorem 1.8 are met, so A maps O(p) — O(#) if
and only if (1.9) holds. But this is equivalent to (1.13).

We now consider O'(p). If we choose {0;}ep~, then O(po) =

U O(py).
THEOREM 1.14. The matriz A maps O'(0) — O'(t) if and only if

(1.15) for each re (0, p) there emist t< (0, 1) and M such that
n™ @, |(ETY = M for all n, k.

Proof. We observe first that ([9], Satz, part (4)) remains true
if the component spaces are merely FK spaces, nested or not, as
long as their unions are linear spaces. (We will have occasion in the
sequel to utilize this observation.) It follows that A maps O'(p) —
O'(y) if and only if

for each j there is an ¢ such that A maps O(p;) — O(r) .
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By Theorem 1.12, this happens if and only if

for each j there is an ¢ such that for every ¢ > g, there exist » > p;
and M such that " a,.|(1/k*") £ M for all n, k.

But this is equivalent to (1.15).
Similar applications of ([9], Satz) give the next two theorems.

THEOREM 1.16. The matria A maps O'(p) — O(t) if and only if

(1.17)  for each t > pt and re (0, p) there is an M such that n™*| a,.|
A/EFI"y < M for all m, k.

THEOREM 1.18. The matric A maps O(p) — O'(¢) if and only if

(1.19) there exist te (0, ¢), » > p, and M such that n"| @ |[(1/k*") <
M for all n, k.

2. Subspaces of E determined by order and type. After the
polynomials, the easiest class of entire funections to handle is the
class (o, 7), and the properties of its members have been investigated
(see [1]). In our terminology, this subspace of E is defined below.

DEFINITION 2.1. Given pe (0, «) and 7€ [0, ), let (o, 7) be the
set of entire sequences having order < p or order p and type =< 7.

DEFINITION 2.2. For pe (0, ) and 7€ [0, «), define G(p, 7) to be
the set of complex sequences x such that lim sup n|z, [/ < Tep.
G(p, 7) < O(p), and moreover ([1], Theorem 2.2.10) it is true that

(2.3) (0, 7) = G(o, 7) U O'(0) .

DEFINITION 2.4. Suppose pe (0, ) and e [0, ). Let {&}e 0"
and let a;, = [n/(rep + &)]"*. Now set G(p, 7, v) = s(&’). (We set
as = 1.) \

It follows from this definition that

(2.5) G(p, 7) = NG(p, 7, v) ,

and that v > ¢ = G(p, 7, v) S G(p, 7, 1).

We will now prove some general results which will allow us to
characterize those matrices which map (p, 7) into (#, o).

Let B; = ). s(a’(j)) and let C; = . s(8*(%)). Set B= U B; and
C =UC,. We shall assume the following:
(2.6) B and C are linear spaces,

(2.7) for every j and 4, v > ¢ implies s(a*(5)) & s(a*(j)) and
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s(8°(2)) & s(B(3)) ,
(2.8) for every j and p, there is a v > g such that >} | a;(5)/a. () | << ,

(2.9) for every 7 and p there is a v > p such that £;(:)/8.(¢) — 0 as

N — oo,

LEMMA 2.10. The matriz A maps B; — C; if and only if

(2.11) for every suffictently large v there exist p and M such that
@B ai() | = M for all n, k .

Proof. (1.9), together with the observation that Theorem 1.8
remains true if in (1.9) “¢” is replaced by “sufficiently large 7”.

LEMMA 2.12. Suppose that for every 1 and sufficiently large v
it 1s true that Bi(1,) = (B:(?)) as n— . Then A maps B— C if
and only if A maps B— C;.

Proof. Suppose A maps B— C. Then ([9], Satz, (4)) for each j
there is an 7 such that (2.11) holds. Our hypothesis then implies
that (2.11) holds with 4, in place of 4, whence Lemma 2.10 asserts
that A maps each B; into C,.

LEMMA 2.13. Suppose that for every j and p there is a v such
that af(s,) = &(aj(5)) as k— . Then A maps B— C if and only
if A maps B; — C.

Proof. Suppose A maps B; — C. Then ([9], Satz, (4)) there is
an 7 such that A maps B, — C,. But then (2.11) is true with j, in
place of j. Our hypothesis implies that if j is given there exists v
such that (2.11) holds with v and j in place of x¢ and j,. Hence,
each B; is mapped into C..

THEOREM 2.14. Suppose for each 1 and sufficiently large v,
Bu(i) = 2(Bu(1)) as n— oo, and moreover that for every j and p
there 18 a v such that of(j,) = &(ai(j)) as k— . Then A maps
B— C if and only if A maps B; — C;,.

Proof. Lemmas 2.12 and 2.13.

COROLLARY 2.15. Under the hypotheses of Theorem 2.14, A maps
B—C if and only if

(2.16) for every suffictently large v there exist pt and M such that
| @, B8:(10) i (G) | = M for all m, k .
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Proof. Lemma 2.10.

Let us specialize the situation. Suppose {o;}€p~, (v.(9)} € o},
{e.}e 01, ax0) = [n/(zep + &,)]"*, and ai(j) = n*"P for j > 0. Set
B, = G(p, 7) = N s(a*(0)) and B; = O(p;) = ) s(a*(5)) for j > 0. Then
(0,7) = B=U7 B;.  Similarly, let {u}ep, {f(dlepf, £.0) =
[n/(gep + &,)]**, and Bu(2) = n™*% for 4> 0. Then if C, = G(, 0) =
N s(8*(0)) and C; = O(r) = N s(8*(¢)) for i > 0, it follows that (g, o) =
C = Us C.. Inasmuch as (2.6)-(2.9) and the hypotheses of Theorem
2.14, with 4, = 0 = j,, are met, we have

THEOREM 2.17. The matriz A maps (o, T) — (¢, 0) if and only
if A maps G(o, ) — G(Y, 0).

THEOREM 2.18. The matriz A maps (p, T) — (&, 0) if and only if

(2.19) for every sufficiently large v there exist @ and M such that
| @ [[n/(oett + &)]“[(tep + &,)/k]** < M for all n, k ,

where {e,} € 0+,
Proof. Corollary 2.15.

THEOREM 2.20. The matriz A maps (o, T) — (&, 0) if and only if

(2.21) for each Be (0, (1o)™) there exist ae (0, (07)™") and M such
that | @, [(n))/*(kN)earitg e < M for all n, k.

Proof. Suppose (2.19) holds and let @ = (o + d)™* be given.
Choose v so large that ¢, < de and let w and M correspond to v as
in (2.19). Choose 7 so that 0 <% <e.e™ and let a = (o + )™
Then routine calculation, using Stirling’s formula, shows that (2.21)
is true. Conversely, suppose (2.21) is true, and let v be given. Let
B=(cp+¢ee)" and let o« and M correspond to B8 as in (2.21).
Choose @ so that if @ = (ot + 8)7', then 2¢, < de. Then (2.19) holds.

3. An example. We give an example of a matrix A which
satisfies (2.21) with p = ¢ =1. Let o, te(0, ). Suppose f is an-
alytic at the origin, and moreover on the closed dise of radius R >
6~'. Suppose further that f(0) = 0 and that | f(z)| < M < Rot™" on
the disc. Let C = (c.;) be the Sonnenschein matrix generated by f
(f /() = X eu?® for m = 0, with f°(z) = 1, then C = (¢,)). Cauchy’s
estimate gives |¢,,| < M"R™*, so, inasmuch as our restrictions insure
that for each B¢ (0, 7) there is an ae (0, o) such that aR =1 and
BM<aR, it follows that |c,, |8"a *<(BM)"(aR) *=(BM/aR)"[(aR) ™ <
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1 (because f(0) = 0 makes C upper triangular, whence we may assume
k =n). Now set a,, = (k!/n!)ec,,. Then A = (a,,) maps (1, ¢7") into
(1, ™).

4. The spaces E and .o Suppose .o~ is the space of analytic
sequences. In [2] and [3], those matrices which map E— E are
characterized, while in [5] and [6] those which map . — & are
determined. We state these results.

THEOREM 4.1. The matriz A maps E— E if and only if

(4.2) for every Be(0, ) there exist ac(0, ) and M such that
la.|B"a™ < M for all n, k .

THEOREM 4.3. The matriz A maps &7 — % 1f and only if

(4.4) for every aec(0, ) there exist Be(0, ) and M such that
la,, |B"a ™ < M for all n, k.

The symmetry between (4.2) and (4.4) is unmistakable, and allows
an especially easy direct proof of

THEOREM 4.5. The matriz A maps &7 — .7 if and only if the
transposed matriz AT maps E— K.

Proof. By (4.4), A maps .o — .o if and only if for each @ > 0
there exist @ > 0 and M such that |a,,|B8*a™ < M for all k, n. Let
o =" B8 =206"". Then this condition is equivalent to: for each v >
0 there exist 6 > 0 and M such that |a,,|07*v" < M for all =, k.
But this is (4.2) for A”.

We note that if Theorem 4.5 is known, then each of Theorems
4.1 and 4.3 follows from the other in the manner of proof of Theorem
4.5. We note further that this theorem allows us to extract from
Theorems 7, 8, and 9 of [4] information about A, rather than just
about A".
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