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ON A SPLITTING FIELD OF REPRESENTATIONS
OF A FINITE GROUP

TOSHIHIKO YAMADA

The theorem of P. Fong about a splitting field of repre-
sentations of a finite group G will be improved to the effect
that the order of G mentioned in it will be replaced by the
exponent of G. The proof depends on the Brauer-Witt theo-
rem and properties of cyclotomic algebras.

Let @ denote the rational field. For a positive integer =, {, is
a primitive nth root of unity. Let y be an irreducible character of
a finite group G (an irreducible character means an absolutely irre-
ducible one). Let K be a field of characteristic 0. Then m(y) de-
notes the Schur index of ¥ over K. The simple component of the
group algebra K[G] corresponding to y is denoted by A(y, K). Its
index is exactly mx(y). If L/K is normal, < (L/K) is the Galois
group of L over K.

In this paper we will prove the following:

THEOREM. Let G be a finite group of exponent s = l°n, wherel
18 a rational prime and (I, n) =1. Let k= Q(,) if 1 is odd, let
E=Q, L)tfl=2. Then, m(x) = 1 for every irreductble character
x of G.

REMARK. In Fong [2, Theorem 1], the above s denoted the order
of G (instead of the exponent of G).
First we review

BRAUER-WITT THEOREM. Let ¥ be an irreducible character of a
finite group G of exponent s. Let q be a prime number. Let K be
a field of characteristic 0 with K(y) = K. Let L be the subfield of
K(,) over K such that [K((,): L] is a power of q and [L:K]# 0
(mod g). Then there is a subgroup F of G and an irreducible char-
acter & of F with the following properties: (1) there is a mormal
subgroup N of F and a linear character + of N such that & = 4%
and L(§) = L, (2) FIN = < (L(y)/L), (8) m.(§) is equal to the g-part
of mg()), (4) for every fe F there is a 7(f)e & (L(y)/L) such that
v(fnf™) = o(f)(¥(n)) for all ne N, and (5) A(&, L) is isomorphic to
the crossed product (8, L(+)/L) where, if S is a complete set of coset
representatives of N in F (Le S) with ff' = n(f, f)f" for f, ', f"eS,
n(f, f)e N, then B(z(f), ©(f") = v(n(f, ).
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Proof. See, for instance, [1] and [4].

REMARK. The above crossed product is called a cyclotomic algebra
(cf. [3]).

COROLLARY. Let p be a prime number. Denote by Q, the rational
p-adic field. Suppose that pY¥s if p + 2, and that 4ts if p =2, s
being the exponent of G. Then mq,(X) = 1 for every irreducible char-
acter x of G.

Proof. 8Set K = @Q,(x). Then mx()x) = mqo,(x). Let q be any
prime number. By the Brauer-Witt theorem, the g-part of mx(y)
equals the index of some cyclotomic algebra of the form (8, L(v)/L),
where Q,c Kc L c L(y) c@Q,(¢). It follows from the assumption
that the extension @Q,({,)/Q, is unramified, a fortiori, L(y)/L is un-
ramified. Because the values of the factor set @ are roots of unity,
it follows that (8, L(y")/L) ~ L. As q is an arbitrary prime, we con-
clude that mx(y) = 1.

For the remainder of the paper we will use the same notation
as in the theorem. Recall that m,(x) is the index of A(y, k(%)).
Hence it suffices to prove A(x, k() Qi k(0), ~ k()), for every prime p
of &(x), where k(y), is the completion of %(}) with respect to p. For
simplicity, set K = k(),. Because A(Y, k(%)) Q.. K is K-isomorphic
to A(y, K), we need to show A(y, K) ~ K, i.e., mg(}) = 1. Note that
k(y) is a cyclotomic extension of the rational field Q. If M is a
cyclotomic extension of @ containing k(y), then M*® represents the
isomorphy type of the completion M, B being any prime of M divid-
ing p.

(i) Suppose that p is an infinite prime. Denote by R (resp. C)
the field of real numbers (resp. complex numbers). If k(x) is not
real, then p is a complex prime, and so mx(y) = 1. Suppose that Z(})
is real. Then K=k()),=R, 1+ 2, and n =1 or 2,ie,k = Q) =
@ and y is real valued. Therefore, 4 does not divide s, the exponent
of G. If s=1 or 2, then G is abelian, and so m,(¥) = 1. Hence we
assume that s > 2, so that the field Q({,) is imaginary and R = K C
Q(C,)» = C. Note that mg()y) =1 or 2. By the Brauer-Witt theorem
there are subgroups F' and N of G and a linear character 4 of N
such that F[> N and R(+") = R(¥) = R and that mj()) is equal to
the index of a cyclotomic algebra of the form (B, E(v)/R). Recall
that & (R(+)/R) = F/N. If R(v) = R, then (8, R(v)/R)~ R. If R(y) =
C, then [F: N] =2. Set F= NUNf. We have

(8, Rp)/R) = (b(f), C/R, 0),  (p(V'=1) = —V/'~1)
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where the right side denotes a cyclic algebra over R and (f? is a
root of unity contained in R so that +(f%) = 1. If +(fH) = —1,
then the order of f would be divisible by 4, which is a contradiction.
Consequently, +(f*) =1 and so (v(f?, C/R, p) ~ R, yielding that
mg(y) = 1.

(ii) Suppose that p does not divide s = I°». Then the corollary
implies that mx(y) = 1.

(ili) Suppose that p|l and [ = 2. Then {, ek, and so {,c K. It
follows from [3, Satz 12] that mx(}) = 1.

(iv) Suppose that p|l and [+« 2. Let ¢ be a prime number.
Let L be the subfield of M = Q({, £,)* over K = k(x), = Q(L,, %), such
that ¢ ¥ [L: K] and [M: L] is a power of q. By the Brauer-Witt theo-
rem there exist subgroups F' and N of G and a linear character +
of N such that GO F[> N, € (L(y)/L) = F/N, [F: N] is a power of
¢, and the g-part of mx(¥) is equal to the index of a cyclotomic alge-
bra of the form (8, L(y)/L). Since I+ 2 and & (M/K) is canonically
isomorphic to a subgroup of £ (Q({..)/Q), it follows that M/K is cyclic,
and so L(y)/L is cyclic. Let ¢° = [F: N] = [L(v): L), {o) = Z(L(+)/L)
and F'= Ui Nf'. Then we have

B, L&)/ L) = (v(f*), L(y)/L,0),  ¥(f")e L.

As 4 is a linear character, 4(f%°) is a primitive tth root of unity for
some integer t. Let ¢ = ¢q%h, (g, k) = 1. Then we can write +(f%) =
£l which implies that the order of f is divisible by ¢°*¢. Conse-
quently, ¢°*¢ divides 7, and so a primitive ¢°*?th root of unity Cpova
belongs to L. We may assume that (', = L Let r be an integer
satisfying r¢° = 1 (mod 7). Since both (.., and {, belong to L, it
follows that

NL(¢)IL(ch+dC£) = CZierCch = quCh ’

which yields that (w(f%), L(¥)/L, 6) ~ L. Therefore, the g-part of
mx(y) is equal to 1. As ¢ is an arbitrary prime, it follows that
me(y) = 1.

(v) Suppose that p|n and pt2. Then k contains a primitive
pth root of unity ,, » being the rational prime divided by p. It
follows from [3, Satz 12] that m(y) = 1.

(vi) Suppose that p|n and p|2. Then k& = Q). If 4|n then
Gie K and so mg(y) =1. If 44 n, then 4}s. It follows from the
corollary that mg(y) = 1.

The theorem is completely proved.
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