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New results on the Bessel and Besov-Lipschitz potentials
on R" are obtained via recent results in nonlinear potential
theory. In particular their respective exceptional classes are
shown to be identical when » > 2 — a/n. By the same tech-
niques, results on thin sets and traces of potentials are
obtained.

1. Introduction. In the theory of “perfect functional comple-
tion” of a given normed linear space of smooth functions defined on
R", the idea is to look for a Banach space with respect to the given
norm in, say, the class of Lebesgue measurable functions by taking
limits in the norm of smooth functions. Associated in a natural way
with any such completion is a c-algebra of exceptional sets of R”.
These exceptional sets give the limits up to which one can pick a
canonical equivalence class representative that is defined on the
largest possible set. In this note, the exceptional sets for two
important perfect functional completions are reexamined in light of
recent development in nonlinear potential theory — see e.g., [3], [4],
and [7]. The two classes of interest are: 4,, = 4, ,(R"), the Besov-
Lipschitz potentials on R*, and L., = L, ,(R"), the Bessel potentials
on R*. Their respective exceptional classes are denoted by *” and
B*? in [5], where they are studied extensively — see especially
Chapter III page 289 in [5] where a criterion for belonging to [*?
or B*? ig given. This is utilized in Proposition 1 below.

L, (R") = g(L,(R")), i.e., the convolution image of the p-summa-
ble functions on R", 1 < p £ o, under the Bessel kernel g, = ¢i"(2),
the L(R") function whose Fourier transform is (1 4+ |&[) " &c R*,
a>0. The norm on L,, is {|4|l., = || fll,, where w =g, xf (|| |l,
the usual norm on L,). For 4,, we say u€d,,, I p =< 00,0<L
a<l,if weL, and

(1) |t]ep = llull, + {SM gm<l "E’Z‘ﬁ? | Y o[z%/}w

is finite, 4,u(z) = u(x — y) — u(x). For 1 < a < 2, 4,u(x) is replaced
by Lu(®) = w® — y) + u(® + y) — 2u(x) in (1). And finally for a = 2,
wed,, iff we L, and oufox,€4,_,,, k=1, ---,n. Other equivalent
definitions of 4,, can be found in [9].
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It is well known that 4,, = L,, for all « >0 and hence %** =
B>, But for 1<p<24,,cL,, and for 2<p =< oo, L., C4,,.
Moreover, these inclusion are proper for p = 2. (See [9].) Thus,
although the classes 4, , and L, , are quite different in many respects
it can be shown (via nonlinear potential theory) that *? = B~?,
a>0,2—an<p<o. When 1< p <2 — a/n, the result remains
open. It is this and related results that are discussed here.

2. Main result. Consider the following set functions (capacities)
defined initially for compact set K< R™:

By (K) = inf ||@]l%,
and
AP(K) =inf @i,

where, in each case, the infimum is over @ € Cy(R") for which ¢(x) = 1
on K. C;(R") denotes the infinitely differentiable functions on R*
with compact support.

REMARK. B, and A{", can be extended to all sets of R" as
“outer capacities” — see e.g., [7].

ProrosiTIiON 1. AL’%(K) = O(BE;’f’p(K) =0)tf Ke A?*(K e B*?7), K
a compact set of R".

THEOREM 1. AUW(K)=0¢F Br(K)=0,a>0,2—a/n<p< o,
K a compact set of R*, and for ap >1, p >1 if K is a compact
subset of R*.

For the proof, we need to draw from two sources — the key
facts are Theorems I and II below.

THEOREM 1 ([8]). Iffor peCo(R"), R,® = @@, ) Tmy 0, =+ +, 0),
1 < m < n, then there exists a linear extension operator E, such that
for 4 Co(R™), R (E.) = 4. Furthermore, there is a constant C
independent of @ and + such that

(a‘) Imelﬁ,?écllg)”a,p

(b) 1 Ew®llas = Cllss

(¢) |BuPloo = C|Play

(d) [Ewbler = Clyls,
whenever 1 < p < o, 8 =a— (n— m/p) > 0.

THEOREM II ([2]). For a Borel measure {, set

UsE) = 92+ (@2 « ) @)
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then

(2) U@ ~ | IS e

Jor p>2 —a/n, 0 <ap £n. The symbol ~ means that the ratio
18 bounded above (for some b > 0) and below (for another b > 0), the
bounds being independent of x and ft. S.(x) = ball of radius r about
2 € R",

Now by I(a), A")K) < CB{(K) for some C > 0 independent of
K C R™ since the restriction R, of each test function for B is a test
function for A. Similarly, B{"(K) < CA{")(K) using I(b). Hence,
I(a — d) implies that B, ~ A ~ ARl on compact subsets of R™,
m =n — 1. Toremove this restriction on K, we use II. By [7] we
know that for any compact Kc R™ B,(K) > 0 iff there is a non-
zero Borel measure concentrated on K such that U, is bounded.
But since ap —n = Bp — m, Il gives B{")(K)> 0 iff B(K) >0,
p>2—8/m,0<ap=mn. (This relation trivially holds when ap > n.)
It might be noted that “B{"),(K) = 0 implies B{")(K) = 0 for1 <p < o”
is an immediate consequence of the definition of Bessel capacity —a
fact we have improved for p > 2 — gB/m.

Note, if we change the notation slightly in the above arguments,
we have: By(K) = 0 iff B3k, (K) =0, p>2 — a/n, K compact in
R, k a positive integer.

CorOLLARY 1. BM(K)=10 iff Bi")(K)=0,8=a— (n —m)/p >
0,p>2— B/m, K compact in R™.

3. Thin sets. A set EC R" is called %, — thin at z,¢ F iff
there exists a Borel measure g such that U(")(«x) is bounded and

Um(@) < lim inf UM)(®) .

T
@€ Eo

Recently in [4], necessary and sufficient conditions of the Wiener type
have been given for a set to be &, — thin at ®,, provided »p > 2 —
a/n. The condition, which depends strongly on II, is by [4] and
Theorem 1

(3) Sl [’r'ap—ﬂAz;,(E N Sr(xo))ll,(p_l)ﬂ < o
o r

It was also shown in [4] that (3) is not equivalent to Z#,» — thin-
ness for 1 < p< 2 — a/n. So, although it remains unknown as to
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what the appropriate replacement for (3) is when » < 2 — a/n, it is
of interest to know just what (3) means when p < 2 — a/n. In this
vain, Theorem 1 gives

THEOREM 2. If EC R then (3) is equivalent to E being
G —thin at x,. Here k is a positive integer chosen large
enough so that p > 1+ 01/V'k). Furthermore, k can be chosen to
be zero provided p > 2 — a/n.

4. Traces of 4,,— potentials, The techniques of Theorem 1
can also be used to obtain trace inequalities in the spirit of [1] and
[2]. If ©(-,v) is a semi-norm on C7(R") for each Borel measure v,
such that @(¢, v) = 0 when ¢ is zero on the support of v, then

THEOREM 3. If for any a > 0 and 1 < p < «, there is a con-
stant C independent of uc Cy(R") such that

O(ul,v) = Cllulls
then

P(ul,v) £ C'|Ulay»

Jor some constant C' independent of w. The converse holds for
p =2,

For various choices of @ we can obtain trace inequalities for the
A-spaces analogous to those given in [1] and [2] for the L, ,-spaces.
In particular, when @ is a Lorentz norm, we get Sobolev type
inequalities for the A-spaces from the known inequalities for the

Bessel potentials (cf. [6]). Thus from [2] we have the following
rather interesting

COROLLARY 2. Suppose tt is a Borel measure on R" with compact
support such that for all xe R* and r >0, and any d:0 <d < n,
(S (x)) £ Cré, then for ap =n,1 < p < =, and some b > 0,

SUPp, st S exp (b | w(x) |")dp(x) < o,
' =p/(p —1).

A further application of the techniques of Theorem 1, is to the
results of [10], where Fubini type theorems with respect to 4, , and
B,., null sets are discussed. Theorem 1 improves the apparent
assymetry in these results.
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