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PARACOMPACTA

PHILIP BACON

The Cech cohomology of paracompact Hausdorff spaces
is characterized (up to isomorphism) by supplementing the
Eilenberg-Steenrod axioms for cohomology.

1. The theorem. Let C be an admissible category for homology
theory, as defined by Eilenberg-Steenrod [2, p. 5]. We say H is a
cohomology theory on C if H satisfies the Eilenberg-Steenrod axioms
[2, p. 14] and (1.1) and (1.2) below.

(1.1) Additivity axiom. If a space X is the union of a collection
7 of pairwise disjoint open sets and for each U in % the inclusion
map j,: U< X isin C, then {j}: H(X) — HY(U)|Uec %} is a representa-
tion of HY(X) as a direct product.

(1.2) Nonnegativity axiom. H%X, A)=0if (X, A)e Cand ¢ < 0.

We say a cohomology theory H is point reductive if (1.3) holds.
The Cech and Alexander-Spanier cohomology theories are examples
of point reductive cohomology theories.

(1.3) If XeC, if S is a singleton (one-point) subset of X, if he
HY(X) and if 2|S = 0, then there is a neighborhood N of S such that
the inclusion map Nc X is in C and 2| N = 0.

A homomorphism t: H— J of cohomology theories H and J on
C is a natural transformation from H to J that commutes with
coboundary homomorphisms. A pair (X, A) is a paracompact pair if
X is a paracompact Hausdorff space and A is a closed subset of X.
The category P of paracompact pairs and all maps among them is an
admissible category for homology theory. We shall prove—

THeOREM 1. Suppose H and L are cohomology theories on P, S
is a singleton, k°(S): HY(S) — L*S) is a homomorphism and H is point
reductive. There is a unique extension of k°(S) to a homomorphism
k: H— L of cohomology theories. If L is point reductive and k°(S)
18 an isomorphism, then k is an isomorphism.

For related theorems see [1], [2, p. 287, Theorem 12.1], and [6].
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2. The proof. As an immediate consequence of a theorem due
to Lawson [3] we have the following.

LEmMMA 2.1. Suppose J and H are point reductive cohomology
theories on P and m: J — H is a homomorphism of cohomology theories
such that m°(S): J°(S) — H(S) is an isomorphism for some singleton
S. Then m is an isomorphism of cohomology theories.

A polyhedron is the union of the simplexes of a geometric simplicial
complex with the metric topology [2, p. 75]. A polyhedron and its
underlying simplicial complex will be denoted by the same symbol. If
L is a subcomplex of a simplicial complex K, (K, L) is a polyhedral pair.
The category K of polyhedral pairs and all maps among them is an
admissible category for homology theory. It is a subcategory of P.

If H is a cohomology theory on K, the Cech method may be
applied to H to define a cohomology theory J on P. J is called the
Cech extension of H. We briefly recall the method (see [4]). Let
(X, A) be a paracompact pair and let 4(X) be the collection of all locally
finite open covers of X. If ae 4(X), let (X,, A4,) be the polyhedral
pair determined by the nerve of w. If ge A(X) and B refines a,
there is a simplicial map r,,: (X;, 4;) — (X, A,) that maps each vertex
V of X; to a vertex U of X, such that VcU. If in addition ve
A(X) and v refines B, r.rs and r, are homotopic, which implies that
rirys = ri. Hence there is a direct system of groups{ HY(X,, 4.)|ae
A(X)} and homomorphisms {r};|8 refines a}, whose direct limit we
shall denote by JYX, A). The coboundary homomorphism d: J%(4) —
J(X, A) for a paracompact pair (X, 4) and the homomorphism J*(f):
JU(Y, B)— JYX, A) induced by a map f:(X, A)— (Y, B) in P are
suitable limit homomorphisms.

LEmMA 2.2. If H is a cohomology theory on K, then the Cech
extension of H ts a point reductive cohomology theory on P.

The proof is left to the reader.

Suppose H is a cohomology theory on P, L is the restriction of
H to K and J is the Cech extension of L. We shall construct a
homomorphism m: J — H called the canonical homomorphism.

Let (X, A) be a paracompact pair and let 4(X) be the collection of
locally finite open covers of X. If ac A(X), there is a map 7, (X,
A) —(X,, A,) defined by a partition of unity subordinate to « [5, p.
833, Proposition 2]. Any two choices of 7, are homotopic. If Be
A(X) and B refines «a, then r,; and r, are homotopic, which implies
that rirk, = r%. Hence the homomorphisms {Hr,)|ac A(X)} induce
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a homomorphism myX, A): JY(X, A) — H'(X, A). It follows from the
way m is defined that m is a homomorphism from J to H.

If S is a singleton, m%(S): J°(S) — H(S) is an isomorphism because
{r.|@e A(S)} consists of just one map, a homeomorphism. Hence by
Lemmas 2.1 and 2.2 we have—

LEMMA 2.§. If H is a point reductive cohomology theory on P
and J is the Cech extension of the restriction of H to K, then the
canonical homomorphism m:J — H is an isomorphism.

Lemma 2.3 implies Lemma 2.4, which in turn implies Lemma 2.5.

LEMMA 2.4. If H is a point reductive cohomology theory on P
and (X, A)e P, then (HY(X, A), {H(r.)|ae AX)}) is a direct limit of
the direct system ({H(X., A}, {H(r4)}).

LEMMA 2.5. Suppose H and L are cohomology theories on P and
t: HHK— L|K is a homomorphism of cohomology theories. If H is
point reductive, there is a unique extemsion of t to a homomorphism
k:H— L.

Lemma 2.6 was essentially proved by Milnor in [6], although the
unigueness part of it was not stated there.

LEMMA 2.6. Suppose H and J are cohomology theories on K. If
S is a singleton and t°(S): H(S) — J(S) is a homomorphism, there is
a unique extension of t°(S) to a homomorphism t: H— J of cohomology
theories on K.

Theorem 1 follows from Lemmas 2.5 and 2.6.
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