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P. Erpos

A number theoretic function f(n) is called multiplicative
if f(ab) = f(a)f(b) for (a, b) = 1, it is called additive if f(ab) =
fla) + f(b) for (a,b) =1. A function f(n) is said to have a
distribution function if for every ¢ the density g(c) of integers
satisfying f(n) < ¢ exists and g(—oo) =0, g(c0) = 1.

In this note we give some best possible estimates for
gle + 1/t) — g(t), for the case of f(n) = a(n)/n.

More than 40 years ago I. Schoenberg proved that ¢(n)/n (¢(n)
is Euler’s ¢ function) has a continuous distribution function [12]. This
result was the starting point of a systematic theory of additive and
multiplicative functions. Very soon Behrend, Chowla, and Davenport
[2] proved that g(n)/n (6(n) = 3.4 . d) also has a continuous distribution
function. Thus it followed that the density of abundant numbers
9(2) exists. (An integer » if abundant if o(n)/n = 2, otherwise it is
deficient.) The value ¢(2) of this density is known only with very
poor accuracy, it seems to be fairly close to 1/4 but is not equal to it [1].

I do not discuss here general theory of the distribution of values
of additive and multiplicative functions, just remark that necessary
and sufficient conditions are known for the existence and continuity
of the distribution function of additive and multiplicative functions
[4], but relatively little is known about absolute continuity. In 1939,
Aurel Wintner called my attention to the problem of absolute con-
tinuity of the distribution funetion of additive and multiplicative
functions. I proved (among others) that the distribution function of
a(n)/n and ¢(n)/n is purely singular, but that there are additive (and
multiplicative) functions whose distribution function is an entire func-
tion [5]. No necessary and sufficient condition for the absolute
continuity of the distribution function seems to be known and e.g.,
it is not known if the distribution funection of the additive function
Ff(® = 1/log p is absolutely continuous.

Denote by g(c) the distribution function of o(n)/n. Since g(c) is
a purely singular monotonic function its derivative is almost every-
where 0. As far as I know it is not known if the derivative can take
any other value. It is easy to see that the derivative from the right
of g(c) for ¢ = o(n)/n is infinity, but it is doubtful if the derivative
from the left exists. I do not know if the derivative from the right
(or left) can take any value other than 0 or infinity. It is easy to see

59



60 P. ERDOS

that there is a dense set of values of ¢ for which the derivative
does not exist from the left and from the right.

Two numbers a and b are called amicable if o(a) = 0(b) = a + b.
I proved [6] that the density of integers which occur in an amicable
pair .is 0. On the other hand, it is not yet known if the number of
amicable pairs is infinite. Rieger obtained an explicit upper bound
for the number of integers not exceeding & which occur in an amicable
pair and in this connection asked me to obtain as sharp an estimation
as possible for F'(xz; a, b) the number of integers n < z satisfying

a = M <b.
n
I prove the following

THEOREM. There is an absolute constant ¢, so that for 0, x >t

(1) F<x;a,a+-1—><cl—1£—t.

Apart from the value of ¢, this tnequality is best possible.
This sharpens a result of Tyan [13]. The same results hold also
if o(n) is replaced by Euler’s ¢ function, in fact the proofs are -a

little simpler. Incidentally with a little trouble we could prove
instead of (1) the following slightly stronger

1) F(ac; a, a<1 + %—)) < czflogt .

Using (1) and (1) we can deduce (following Diamond [3]) that

(2) F;1, ) = 0g(a) + o -2 ) -
log «
(2) sharpens a a result of Feinleib [10] and the error term in
(2) is best possible.
I proved [7] that if ¢ — 0 then (v is Euler’s constant)

(3) FWLL+@=ﬂ+dmﬂww%

and (3) of course implies that (1) if true is best possible. Thus to
prove our Theorem we only have to prove (1). The proof of (1) will
be similar to the one I used in estimating the number of primitive
abundant numbers not exceeding z [8].

First I explain the need for the assumption z >¢. If a <
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on)n < a4+ 1/t,n <2 and ¢ is very large then clearly (1) can not
hold since 1 < F(x; a, @ + 1/t) is greater than c.x/log ¢.

As far as I know it has never been proved that for a suitable
« the number of solutions of o(n)/n = « is infinite — or even unbounded
in @. It follows by a method of Hornfeck and Wirsing [11] that the
number of solutions of o(n)/n = a, n < x is o(z°) for every ¢ > 0 uni-
formly in a.

To prove (1) denote by B(z, t) the set of integers

(4) 1§b1<-~-<bk§x,a§-‘¥i<a+%.
We have to show that for « > ¢
(5) k <eczxflogt.

To prove (5) we show that if we neglect o(x/log t) of the integers
b we can assume that the b’s have various properties which make
the estimation of their number easier.

First of all we can assume that no b is divisible by a power of
a prime p% « > 1 which is greater than (log¢)>. This is clear since
the number of such integers < 2 is less than

(6) P —9%<czx/logt.

:4 12
iz (et p
Write now
( 7) b, = u,vw,

where all prime factors of u, are < logt, all prime factors of v, are
in (logt, t'#) and all prime factors of w, are = ¢'2,
Now we show that we can assume

(8) w;, < 0.

For if (8) does not hold then u, must have at least » distinet prime
factors < logt where (logt)” > ¢/ or » > log t/20 loglogt. Thus by
a simple computation the number of b’s not satisfying (8) is less than

1\r (2 loglog t)” C
9 = )= .
( ) x(p<%gt P)'r" <@ 7! < logt

Now we consider the b’s with v; > 1, i.e., we consider the b’s
which have at least one prime factor in (log t, t'?). Let p,|b; be such
a prime factor, then we must have pifb,. Now we show that the
integers b,/p; are all distinct, thus the number of these b’s is less
than «/log t.

To see this assume b,/p; = b;/p;, p; > p,. But then



62 P. ERDOS

ag  o®p) _ o@p) o 0@ _ (v + L,
b/ p. b;/p; bo(b)  pdpi+ 1)
But a < 0(b)/b < a + 1/t, p; < t'? p; < t'*. Thus
11 1 < G(b )bJ 1 1 d (pz =+ 1)1)1 1 + _l
) =306y " Taw ™ a3

(10) and (11) clearly contradict each other. Thus we can henceforth
assume that our b’s have no prime factor in (log ¢, t¥*). Thus finally
we can restriet ourselves to the b’s of the form

b; = ww;

where all prime factors of u, are < logt and u, < ¢tV and all prime
factors of w, = t'2.
Next we show that we can restrict ourselves to the b’s for which

o(w;) 10

2) <L+

7

Consider first the b’s which for some » =0, 1, --- have two or
more prime factors in (2"t 2"*'¢t'?), The number of these b’s is
clearly less than (in X, the summation is extended over the primes
in (2rt1/2’ 2fr+1t1/2))

°° 1

+5(25) <*Z ogrer ~ 8

1 X
0(rlog2 + logt): ~ logt

For the b’s which have only one prime factor in (27¢"% 27'¢'/%),
r=20,1 .-+ we evidently have

a(w;) 1 10
W< (14 gm) <1+ g
for ¢ >t,. Thus henceforth we can assume that (12) holds.
Thus we obtained that if we neglect cx/logt integers than all
our integers b, < x satisfying

1
t

have the following properties. All their prime factors »*, a > 1

satisfy p* < (logt)?, they have no factor in (logt, ¢'*) and if we put

b, = w,w; where all prime factors of u, are =< logt then u, < ' and
o(wy) 10

w, <1+ = P

Now observe that for all the b’s which remain we must have
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constant value o(u,)/u; = a. To see this assume that, say, o(u,)/u, >
o(u,)/u, then we have

(13) 0(“1) _ 0(”2) g 1 > __1_
U, U, Uty Al

or by (13)

14 (%) 1 _ 1

(14) ” <a+ T

but then by (12) and (14) for ¢ > ¢,

(ot e ) <o

an evident contradiction,
In view of what we just proved all the b’s (neglecting perhaps
cx/logt of them) are of the form

o(uy)

U, W, =a, u, <t?,

2

where all prime factors of u, are <logt¢ and all prime factors of
w,; are = t'A,

In a previous paper [9] I proved that there is an absolute con-
stant C so that

A

(15) s L<g.
o(u)ju=a Y
In fact with more trouble we can show C =1 [7], [9].
Now we can complete the estimation of the number of b’s not
exceeding ux.
For fixed u; the number of w, for which w,w, can be a b is less
than the number of integers =< x/u, all whose prime factors are = '/,
Thus by Brun’s method that number is less than

cx
u,; logt

summing for u, we obtain our statement from (15). The restriction
t > t, is clearly irrelevant.
By somewhat more trouble we could prove

F<x; a, a + %) <(1+ 0(1))F<9c; L1+ -i—) — (1 + o(l))e"aflog ¢ .

F(z;a, a + 1/t) < F(z; 1, 1 + 1/t) is easily seen to be false in
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general but for fixed o

IimF(ac; a, o+ ) <1
a=e Fl(@; 1, 1 + @)

can be proved by the methods of this paper, or g(a + ) — g(a) <
(1 + a).
To see that

F(x; a, a+ %) gF(ac; 1,1+ —1—)

fails choose t =1 and let ¢ <1 + 1/x. There is no o(n)/n, n < 2, in
(1, @). On the other hand, the perfect numbers 6, 28 etc. are counted
in F(x; a, a + 1) but not in F(x, 1, 2). The reader may with justice
consider this counterexample as dishonest and in fact by the methods
of this paper we can prove

F(x,a, a + 1><F<x,1 1+ 1)
if @ > 1+ 2/x but we supress the details.
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