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The purpose of this paper is to prove that the pointwise
closure of an equicontinuous family of point-compact relations
from a compact Hausdorff space to a locally compact Hausdorff
uniform space is locally compact in the topology of uniform
convergence. This is a generalization of a recent result of
R. V. Fuller.

1* Introduction* The purpose of this paper is to study con-
ditions under which a family of continuous point-compact relations is
locally compact. Our theorem generalizes a theorem of Fuller [2].
For the most part we use the concepts and results of Smithson ([5],
[6], [7]), and Michael [4].

We use the term relation where other authors use multivalued
function or multifunction. If F is a relation from I to 7 and
Be F, we write

F~\B) = {xeX: F(x) n B Φ 0} .

A relation F from a topological space X to a topological space Y is
called continuous iff

(a) F~γ{A) is closed in X whenever A is closed in Y, and
(b) F~ι{B) is open in X whenever B is open in Y.

F is point-closed (respectively point-compact) iff F(x) is closed (re-
spectively compact) for each xeX.

We recall three topologies defined on the collection of all non-
empty subsets of a topological space X(see Michael [4]). The collec-
tion of all sets of the form { B c I JSc U} where U is open in X,
is a base for the upper semi-finite (u.s.f.) topology. The collection
of all sets of the form { β c l βfl U' Φ 0} where U is open in X,
is a subbase for the lower semi-finite (l.s.f.) topology. The finite
topology is the supremum of the l.s.f. and u.s.f. topologies. Equiva-
lently, the finite topology has as a basis all sets of the form
(Uu , Un} = {AdX: AC] Ut Φ 0, 1 ^ i ^ n and A c \JU Ut}, where
U19 , Un are open in X. A relation F: X —* Y is continuous if and
only if the function F: X—> P(Y) (the power set of Y with the finite
topology) is continuous, c.f. remark following Theorem 2.7 of [7].

Let X and Y be topological spaces and let ^~ be a set of re-
lations from X to Y. The pointwise topology & [7] on ^ has a
subbase consisting of the sets of the form {Fe ^\ F(x) Π UΦ 0}
or {FeJ^: F(x)a V] where xeX, and U, V are open in Y. We

101



102 W. N. HUNSAKER AND S. A. NAIMPALLY

note that the projections {Πx: x e X] defined by ΠX(F) = F(x) are
continuous functions into the collection of all nonempty subsets of
Y with the finite topology.

Let X be a topological space, (Yy %S) a uniform space and let
y be a set of relations from X to Y. For Ve %f, let W(V) =
{(F, G j e / ' x / : for all xeX, (y, G(x)) f]VΦ 0 for all y eF(x), and
(F(x),y')ΠVΦ 0 for all j/'eG(aj)}. Let CW be the uniformity on
&~ generated by the collection of all such encourages as W(V).
The topology generated by 'W" is the topology of uniform conver-
gence [5] and is denoted by Ήf^. If (Y, *%?) is a uniform space,
J^~ is called equicontinuous at xe X [5] iff for every Ve%f there is
a nbhd. U oί x such that for all FeJ^

(a) FίEOc V(jF(aO), and
(b) F{z) Π F(i/) Φ 0 for all 3 e U and for all y e F(x).
We now state a theorem of Smithion which we use in the final

section.

THEOREM 1.1. ([5]). If JΓ is an equicontinuous family of point-
compact relations from a compact space X to a uniform space Y,
then on

For further details and a survey the reader is referred to
Smithson [7].

2* Local compactness of a space of relations* We begin by
proving two lemmas.

LEMMA 2.1. Let F be a point-compact relation from X to Y,
and let A = {({x}, F(x)):xeX} be compact in P(X) x P{Y), where
each of P(X), P( Y) has the finite topology. Then F is a compact
subset of X x Y.

Proof. Let & be an open cover of F in X x Y. For each xe X,
{x} x F(x) is compact; so there is a finite subcollection V* x £/?, 1 ^
i <^ n of έ? which covers the set. We can assume that x e V* for
each i and that F(x) Π £7? Φ 0 . <y;9 , Vΐ> x (U?, , E7J> is an
open set in P(X) x P(Y). For each xeX, we obtain such a set,
and this leads to an open cover of A. Since A is compact, there is
a finite subcover <V?% , Vφ x <£/{% , Ufy, l^i^k. Finally,
{Vp x Up: 1 ̂  i ^ ni9 1 ̂  i ^ k} is a cover of F and so jp7 is compact.

LEMMA 2.2. If F is a continuous relation from X to Y, then
the function g: X-+P(X) x P(Y) defined by g(x) = ({x}, F(x)) is con-
tinuous. (P(X) and P(Y) both have finite topology.)
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Proof. Let <F> x ζUlf •••, Un} be a basic open nbhd. of ({#},
F(x)). The function F:X—+P(Y) is continuous, hence there exists
a nbhd. NaV of x such that jP(iV) c <C71, , Un). Clearly, g(N) c

From the above lemmas it follows that if X is compact, Yis T2

and i*7 is a continuous point-compact relation, then F is a compact
subset of X x Y.

The proof of the following lemma is straightforward.

LEMMA 2.3. Let JF' be a family of relations from a topological
space X to a topological space Y. Then the l.s.f. topology on ^" is
contained in &.

LEMMA 2.4. Let X be compact Hausdorff, (Y, T*) a uniform
space, and J^~ a family of continuous point-compact relations from
X to Y. Then on ^~ the u.s.f. topology is smaller than

Proof. If F e ^ 7 then F is a compact subset of X x Y. Suppose
F c N is an open subset of X x Y. Let ^ be the (unique) unifor-
mity on X. Then from [3] page 199, it follows that there exist
Ue <&, Ve T such that Fa U {U(x) x V(y): xeX,ye F(x)} c N. Then
W(V)[F]aN, thus completing the proof.

LEMMA 2.5. Let ^~ be an equicontinuous family of relations
from a Tx-space X to a uniform space (Y, °F). Then on
the finite topology.

Proof. Let [x, U] = {Ge jT: G(x) c U}, where a G l and U is
open in Y. If Fe [x, U], then N = <X x UU (X - {x}) x F> is a
nbhd. of F in the finite topology, and FeNa[x, U], Suppose
FeM= {Ge J?~: G(x) Γ\ W φ 0 } w h e r e xeX a n d W i s o p e n i n Y.
If ίXίc) c TF, then the above method works, and so we assume that
F(x) ςt W. Let peF(x)f] W and let Ve T such that F ^ c l f .
Since &~ is equicontinuous at x, there is a nbhd. ί7 of x such that
for all Te jη τ(ϋ)cz V(T(x)). Now Fe (U x [F(p)]°, C/ x (Y- F(p)) f

ί7 x TΓ, (X — {#}) x F> c Λf, which completes the proof.

LEMMA 2.6. Let X be compact Hausdorffy and let (Y, T*) be a
uniform space. Let J?~ be an equicontinuous family of point-com-
pact relations from X to Y. If J?~ is the ^-closure of ^~ in the
space of all point-compact relations from X to Y, then 3~ is closed
in &\X x Y), the space of all nonempty compact subsets of X x Y
with the finite topology.
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Proof. Let (Fa) be a net in β~ converging to Fe<tf(Xx Y).
Note t h a t t h e domain of F is X; for if xeX- domF, then
{Ge<έ?(Xx Y):G(zXx Y- {x} x Γ} is an u.s.f. nbhd. of F in
^(X x Y), and Fa is eventually in this nbhd., a contradiction. Clear-
ly F is point-compact. We now show that (Fa) —> F in £?. Let
U be open in Γ, and suppose F(x) c ?7. Then the set N = <X x
!7U (X - M) x Γ> is a nbhd. of F in the finite topology on C^{X x F).
Since Fa is eventually in AT, it follows that Fa is eventually in
[x, U]. If we are given a nbhd. M = {G: G(x) Π W = 0}, (W open
in Y) of JP and F(x) ςt W, then we employ the technique used in^ the
last part of the proof of Lemma 2.5, and use the fact that J^~ is
equicontinuous ([5], Lemma 6).

We now prove the main result.

THEOREM 2.7. Let J^ he an equicontinuous family of point-
compact relations from a compact Hausdorff space X to a locally
compact Hausdorff uniform space Y. Let <β~ he the &s-closure of

in the space of all point-compact relations from X to Y. Then
is locally compact in

Proof. We first note that on ̂ 7 & c ^ ^ ([5], Lemma 1). From
Lemmas 2.3 and 2.4 it follows that the finite topology is contained
in ^<g^ and since ^ is equicontinuous, we have by Theorem 1.1,
& = <%/ςg> on β". From Lemma 2.5, it follows that the finite to-
pology equals ^ ^ on ^ 7 Each member of j^~ is compact, and so
β~aC(Xx Y). By Lemma 2.6, _#" is closed in the finite topology
on C(X x Y). Since C(X x Y) is locally compact ([4], Prop. 4.4.1),
3~ is locally compact.

If in the above theorem, each F e ̂ ~ is a (single valued) func-
tion, then it is easy to verify that each member of β~ is also a
function. Hence a recent result of R. V. Fuller [2] on the local
compactness of jβ' is a special case of the above theorem.
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