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ON THE NIELSEN NUMBER OF A FIBER MAP

DENNIS MCGAVRAN AND JINGYAL PAK

Suppose .7 = {E, =, B, F'} is a fiber space such that 0—

o (F') il (B i 7 (B) — 0 is exact. Suppose also that the above
fundamental groups are abelian. If f: £ — FE is a fiber pre-
serving map such that fi(@) = « if and only if ¢ = 0, then it is
shown that R(f) = R(f')- R(f,) where R(h) is the Reidemeister
number of the map #.

A product formula for the Nielsen number of a fiber map
which holds under certain conditions was introduced by R.
Brown. Let 9 = {E, x, L, (p, q), s'tbe a principal s'-bundle
over the lens space L(p, q), where .7 is determined by [f/]¢c
[L(p, @), ¢p°] = H*(L(p, q), 2) ~2,. Let fi E— FE be a fiber
preserving map such that f,,(1) = c,, fil,) = &, where 1 gener-
ates 7;(s!) ~z and i,, generates 7;(L(p, q)) ~%,. Then the Niel-
sen numbers of the maps involved satisfy

N(f)=N(fy)-(d,1—¢,5),
where d = (7, p) and s = j/p(c, — ¢,).

I. Introduction. Let 9 = {E, &, B, F} be a fiber space. Any
fiber preserving map f: E — E induces maps f’: B— B, and, for each
be B, f,: ' (b) — 7 '(b), where 77'(b) =~ F. The map f will be called
a fiber map (or bundle map if 7~ is a bundle).

Let N(g) denote the Nielsen number of a map ¢g. The Nielsen
number, N(g), serves as a lower bound on the number of fixed points
of a map homotopic to g, and under certain hypotheses, there exists
a map bhomotopic to g with exactly N(g) fixed points. R. Brown
and E. Fadell ([2] and [3]) proved the following:

THEOREM. Let 9 = {E, w, B, F} be a locally trivial fiber space,
where E, B, and F are connected finite polyhedra. Let f: E— E be
a fiber map. If one of the following conditions holds:

(1) m(B)=m(B)=0.

(ii) =(F)=0.

(ili) F74s trivial and either w(B) =0 or f=f" xf, for all
be B then N(f) = N(f")-N(f,) for all be B.

These strong restrictions on the spaces involved eliminate some
interesting fiber spaces. For example, any circle bundle over B with
w(B) # 0 is excluded. Furthermore, if 7,(B) = m,(B) = 0, then the
total space F is B x S'.

This paper has two objectives. The first is to try to generalize
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the above result to the case of a bundle 9~ = {FE, 7, B, F'} where
7,(B) is a nontrivial abelian group, and 7,(B) = 0. The second is to
investigate the relationships between the Nielsen numbers of the
maps f, f’, and f, for particular circle bundles.

In this paper all spaces are path-connected.

II. Some general results. The reader may refer to [1] and [2]
for definitions and details concerning the Nielsen number N(f),
Reidemeister number R(f), and Jiang subgroup T(f) of a map
fi X—X.

We will be particularly interested in the Reidemeister number.
It serves as an upper bound on N(f) and in many cases R(f) = N(f).
Let h: G — G be a homomorphism where G is an abelian group. It
is shown in [1] that R(h) = |coker (1 — &)| (| |means the order of a
group). The Reidemeister number of a map f: X— X is defined to
be the Reidemeister number of the induced homomorphism f;: 7,(X) —
w(X). Now let .7~ be a fiber space. Let F,=7n"'b). If w:I—B
is such that w(0) = b and w(l) = &', we may translate F), along the
path w to F, (see [6]). This gives a homeomorphism @: F, — F,.
Given a fiber map f: £ — E, we have the natural map f;: F, — F.,,
the restriction of f to F,. Then by definition f, = wof,. For more
details on f;: F, — F, readers are referred to [2].

Suppose .7~ is a fiber space and w is a loop based at b. Then
we have w: 77(b) — ©7'(b). The fiber space .7~ is said to be orientable
if the induced homomorphism w,: H,(7~'(b), 2) — H,(7='(b), 2) is the
identity homomorphism for every loop w based at b. It is shown in
[2] that if .7~ is orientable and if the Jiang subgroup T(p~'(b), ) =
(p~'(b), e,) for a fixed be B then the Nielsen number of f, is inde-
pendent of the choice of path from f'(b) to b. Furthermore, the
Nielsen number N(f,) is independent of the choice of be B.

LEMMA 1. Let .7 be a fiber space with = (F'), n(E), and =,(B)
abelian. Suppose f: E— E is a fiber map. Then the following
diagram commutes:

¥

T, (F) — m,(E)
ll—fw . jl—fs
T (Fy) —— 7 (E) .

Proof. First, by [6], the map i is homotopic in E to the identity
map on F,,. Hence we have

io(1 — fi)@) = ila — @f)y@)]
= i#(a) — y(Wef, ,,'),,(a) = '55(“) — (tyofs b'a,)(a)
= i) — (fiei@) = (1 — f)oi@) -
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LEMMA 2 [4]. Suppose we have the following commutative
diagram of modules, where the rows are exact:

0—s A -“.B_,C 0

bbb

0 ALl p L 0.

Then there is an exact sequence

§22 13
0 — ker a —> ker 8 —— ker v
w ¢% ek
—— coker &« —— coker 8 —— coker vy —— 0 .

The homomorphisms ¢, and ¢, are restrictions of # and ¢, and
. and &), are induced by ¢ and & on quotients. The connecting
homomorphism w: ker v — coker « is defined as follows. Let ¢ceker,
choose be B with ¢b =¢. Since &gb = veb = v¢ = 0 there exists
a’'€ A’ with 8b = f'a’. Define w(c) = [a’], the coset of &’ in coker a.
Then o is a well-defined homomorphism. See [4, p. 99] for the proof
of the lemma.

THEOREM 3. Suppose .9~ = {E, n, B, F'} 1s a fiber space such that
0— 7, (F) —5 m,(B) — 7,(B) — 0

18 an exact sequence of abelian groups. Suppose f: E— E is a fiber
map and w:I— B is a path from b to f'(b). Then we have the
Sfollowing exact sequence:
0——ker(l — fi) — ker (1 — f) — ker 1 — fi)
—— coker (1 — f33) — coker (1 — f,) — coker (1 — i) — 0.

Proof. The fiber mayp induces the following commutative diagram:

0— T (F) — s 1(B) — s 1,(B) — 0

<1—fw>l a —mj -5l j
00— n(F) —t— n(BE) — " z(B)—0.

Now the result becomes a simple application of Lemmas 1 and 2.
COROLLARY 4. ker (1 — f,y) is independent of w and b.

Proof. ker (1 — f,;) is isomorphic to the kernel of the map

ker (1 — f,) —%>ker (L — fY). But this map is the restriction of
7. T (E) — 7, (B), which is independent of w and b.
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Suppose h:G — G is a homomorphism of abelian groups. We
will say that % satisfies Condition A if k(@) = a if and only if @ = 0.

THEOREM 5. Suppose .7 1is a fiber space satisfying the hypothe-
ses of Theorem 8. Suppose f: E— E 1s a fiber map such that f;
satisfies Condition A. Then R(f) = R(f")-R(f,) for all be B.

Proof. We have (1 — fi)(«) = 0 if and only if f/(a) = « if and
only if @ = 0. Therefore, 1 — f/ is injective and we have the fol-
lowing exact sequence:

0 — coker (1 — f;;) — coker (1 — f3) — coker (1 — f;) — 0.
The theorem follows from the properties of R(f).

COROLLARY 6. Under the hypotheses of Theorem 5 R(f)) is
independent of w and b.

Proof. This follows since both R(f) and R(f’) are independent
of w and b.

ExaMPLE 1. Let .9~ be a principal T*-bundle over a (2n + 1)-
dimensional lens space L(p), » = 1. We know from [5] that L =
L(d) x T* where d divides p. Let f: E— E be a bundle map. It
follows easily from results in [1] that N(f)) = R(f)). It is also
shown in [1] that N(f’) = R(f’) for n =1, and the proof can be
easily generalized to higher dimensions. Furthermore, by showing
that T(f) = 7(L(d) X T*), where T(f) is the Jiang subgroup of f,
one can show that N(f) = R(f). Now such a bundle satisfies the
hypothesis of Theorem 3. Hence, if f;: 7,(L(p)) — 7, (L(p)) satisfies the
hypothesis of Theorem 5, we have N(f) = N(f')-N(f;) for all be B.

ExampLE 2. If G is a compact connected semi-simple Lie group,
then 97 = {E, 7, G, S'} satisfies the hypothesis of Theorem 3. If
f: E— FE is a fiber map then N(f) = N(f'):N(f;) follows from [3]
since the second integral cohomology group of G vanishes. Assume
N(f) # 0 = N(f;). Then since G and S*' are H-gpaces T(f') = n(G)
and T(f,) = 7(S"); and we have N(f’) = R(f’) and N(f;) = R(f;). It
follows that R(f) = R(f')-R(f;) independent of Condition A.

LEMMA 7. Suppose h:Z,— Z, is such that h(l) =m. Then
Condition A holds iff (1 — m, p) = 1.

Proof. Suppose L —m,p)=1. If @) =mt=70,1=n<p,
then mn = n(mod p). Hence p divides (1 — m)n, which is impossible
if 1 —m, p) =1.



ON THE NIELSEN NUMBER OF A FIBER MAP 153

Now suppose M(a)=a iff @« =0. Suppose (1 —m, p) =d. Let
l-m=c¢d, p=cd. Then h(¢,) = mé,. Now

MC, — € = C(m — 1) = —¢ed = —e,p .

Thus i(¢,) = ¢, and d = 1.

EXAMPLE 1 (con’t). We have 7,(L(p)) = Z,. Suppose fi(l) = 7.
Then N(f’) = (1 — m, p). Hence Theorem 5 is applicable if and only
if N(f) = 1.

ITII. A general solution to Example 1. Let .7 ={FE,x, L(p,q),s'}
be a principal s'-bundle over a 3-dimensional lens space L(p, q). If
7 1s induced by [f;] € [L(p, q), CP*] =~ H¥L(p, q), Z) ~ Z,, then E =~
L(d, q¢) x s', where d = (j, p)(see [7]). Let j =j'd, p = p'd.

THEOREM 8. Let 7 be as above and f: E— E a fiber map such
that, for a particular choice of be B and w, fu(l) = ¢, and fi(1,) = &,
where 1 gemerates m(s') =~ Z and 1, generates w(L(p, q)) ~ Z,. Let
8 = J/p(e, — ¢;). Then

N(f) = N(f»)-@d, 1 — ¢, 9) .

Proof. We first examine the structure of L(d, q) x s as an
s'-bundle over L(p, q) (see [7]). L(p, q¢) and L(d, q) are obtained from
s* as the orbit space of a free Z,-action and Z,-action, respectively.
Given ((r, 6,), (15, 0,)) € s%, let {(r,, 8,), (r, 6,)) represent its equivalence
class as an element in L(p, q). In L(d, q) x I, I =0, 2], identify
{(ry, 0), (14 62)), 27} with {{(ry, 6, + 5'v), (rs, 0, + 5'qv)), 0} to obtain
E, where v = 2r/p. Define h: E— L(d, q) x S' by

W<y, 6,), (rsy 6D, 1) = {<(r 6, + _227;7"1;), (rz, 9, + _2%3"(1@», t} .

Then h is a homeomorphism. Let 7,(L(d, ¢) x S') be generated by
(I, 0) and (0,1). Then (I, 0) is represented by the loop 4; =
L@, t@2x/d)), (0, 0)>, 0}, 0 <t <1, and (0, 1) is represented by &, =
@, 0),(0,0),¢t, 0<t<2r. Thenin E, o, = {{{, t@x/d)), (0, 0)), 0}
and o, = {{1, — t/(2n)j'v), (0, 0)>, t} represent (Is 0) and (0,1) re-
spectively. [, is represented by the loop v = ((1,tv), (0,0)) 0 <t < 1.
Now the projection map 7: E — L(p, q) is given by

z{l(ry, 0,), (14 027, 8} = {(ry, 6.), (12 62)) -
We have

oG, = <<(1 t%”_), (©, 0)>> 0<t=1=(Q tp'v), (0,0).
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Hence
my(ly, 0) = D
Also
To0, = \\< - —t—y v) (o, 0)» 0<t<an
S0
m(0,1) = —J" .

One fiber in E consists of

P’

U @, =), (0, 0)), ¢} .

n=0
0st=2rm

Hence, in L(d, q) X S', this fiber is

9] {<( (n+ 5= )v), ©, 0)), ¢} = K(t, 7'v), ©, 0, Z7)

Py 2r
o=t

where 0<7 <9’ and 27T _represents the equivalence class of
2nt(mod 27). Hence 4,(1) = (', p).
We have the following commutative diagram:
0 — 7,(8) —5 7(L(d, q) x ) > 7 (L(p, 9)) — 0
(l—fw)l 1(1~f#) l(l—fn’)

0 — () —5 m(L(d, @) x 8 > 7 L(p, 0) — 0 .
We must compute the cokernel of (1 — f;) since N(f) = |coker (1 — f3) |.
Let

A -7, 0 =@ 0 - L—£)01)=CGu.

Commutativity of the right hand square implies that ¢ =1 — ¢,
while commutativity of the left hand square implies 4 =1 — ¢,. Now

(L = fD)emy(0,1) = —(1 — ¢)y’
Tyl —f)0,1) =p's —ju=90s—31—c).

Hence
p's —§'(1 — ¢) = —(1 — ¢)j’'(mod p) .
Therefore,
J'(e.—¢) + p's=kp.

We must have p’'|j'(c, — ¢,) so
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o
s:kd—l—%(cl—cz).
Hence we may assume
Y .
s = ;7—,(01 — ) = —'7‘(01 —Cy) .
D D

Therefore, Im(1 — £,) is generated by (I — ¢, 0), (5, 0), and (0, 1 — ¢,).
Now the group 7,(L(d, q¢) x S*) =~ 2, D 2, and the subgroup generated
by (I — ¢, 0) and (5, 0) is the subgroup generated by (I — ¢, s), 0).
Consequently, the cokernel of (1 — f;) is isomorphic to z,/(1 — ¢, 8)2,D
#/(1~c,)z. Which, in turn, is isomorphic to 2.,,—.,,» D 2zu—.,. Therefore,

|coker (1 —f) | = N(f) = (d, 1 — ¢, 8) |1 — el = (d, 1 — ¢, 8)-N(fy) -

Note. (1) Since 7 is orientable and T(z (), ¢,) = m,(77'(b), ),
the above formula is independent of w and b.

(2) In the above argument we could replace L(p, q) with the
generalized lens space as in [5].

(38) If p is a prime the product formula follows from results
of R. Brown and E. Fadell [3].

(4) Theorem 8 also indicates that a product theorem of the
type obtained by R. Brown and E. Fadell is hard to expect in general.

COROLLARY 9. Let 7 be as in Theorem 8. Suppose fi: E— K
18 o bundle map such that for some be L(p, q) f,: 7w '(d) — () s
homotopic to a fixed-point free map. Then there exists o map
g: E— E, homotopic to f, which is fized-point free.

Proof. Let f, be the fixed-point free map on x~'(b) which is
homotopic to f;. Clearly N(f,) = 0 and since the Nielsen number is
a homotopy invariant, N(f;) = 0. Thus from Theorem 8, N(f) =0,
and the corollary follows from the converse of the Lefschetz fixed-
point theorem of F. Wecken [8].
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