Pacific Journal of

Mathematics

ON TWO CONGRUENCES FOR PRIMALITY

M. V. SUBBA RAO




PACIFIC JOURNAL OF MATHEMATICS
Vol. 52, No. 1, 1974

ON TWO CONGRUENCES FOR PRIMALITY

M. V. SUBBARAO

In this paper we consider the congruences

no(n) = 2(mod ¢(n)) , e®)t(n) + 2 = 0 (mod n) .

1. Introduction. Apart from the classical Wilson’s theorem
(that a positive integer p > 1 is a prime if and only if (p — 1)! +
1 = 0 (mod p)) and its variants and corollaries, there is probably no
other simple primality criterion in the literature in the form of a
congruence. In this connection, we may recall Lehmer’s congruence

[1]:
1.1) n — 1 = 0 modg(n) .

This is satisfied by every prime. We do not yet know if it has
any composite n as a solution. In 1932, Lehmer [1] showed that if
there exists a composite number % satisfying (1.1), then » must be
odd and square free and have at least seven distinct prime factors.
This result was improved in 1944 by Fr. Schuh [4] who showed that
such a 7 must have at least eleven prime factors. In 1970, E.
Lieuwens [2] corrected an error in the proof of Schuh.

In the congruences we shall consider,

(1.2) no(n) = 2(mod ¢(n))
and
1.3) d(n)t(n) + 2 = 0(mod n) ,

where ¢(n) is Buler’s totient, and ¢(n) and o(n) are respectively the
number and sum of the divisors of n. Each of these is satisfied when-
ever n is a prime. It is a simple matter to solve (1.2) completely
(Theorem 1). However, the problem of solving (1.3) for all composite
integers n seems to be a deep one, and we offer only a partial solution.

2. THEOREM 1. The only composite numbers n satisfying (1.2)
are n =4, 6, and 22.

Proof. Let a solution of (1.2) be
n = zapfl ces por

where p,, ---, p, are the distinet odd prime divisors of =n. If for
some (1 <1 =7), a; > 1, then p,|4(n) and p,|n, so that p,|2, an
absurdity. Hence
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QG =Qqy,= -+ =qa,=1.

An analogous argument shows that ¢ = 0,1 or 2. Hence =n =
29,0, -+ p,, Wwhere a = 0,1 or 2. Next, when » is in this form,
2"|g(n) and 27| ¢(n), so that we should have 27|2, on using the con-
gruence. Hence » =0 or 1, and we get n = 2, 4, p, 2p, 4p, for the
possible solutions of (1.2). However, n = 4p, is impossible, for other-
wise 4]|¢(n), and this would imply, on using the congruence, that
4]2.
In the next place, if n = 2p,, we have

6p1(p1 + 1) = 2 mod (pl - 1) .

This shows that (p, — 1)]10, and this gives p, =2, 3, and 11.
Hence all the possible composite solutions of (1.2) are n =4, 6, and
22, and these are indeed solutions of the congruence.

3. The solution of congruence (1.3). TUp to 100,000, the only
composite solution of (1.3) is n = 4, and the question naturally arises
if there is any composite solution > 4. While this is still open, we
devote the rest of the paper to obtain some information about such
a solution if it exists.

THEOREM 2. Every composite solution n > 4 of the congruence
(1.3) satisfies the following conditions:

(A) n is square-free.

B) If p is an odd prime divisor of wm, thewn there 1s no prime
divisor of the form px + 1.

(C) Let K be defined by the relation

3.1) s(m)t(n) + 2 = Kn .

Then K and n are of opposite parity and 4 K.
D) If n=m is a solution of (1.3), then n = 2m 1s not a solution.

Proof. For an odd prime p, if p*|n, then »|¢(n); hence on using
(1.2), p|2, which is absurd. Again if 4|n and » > 4, a simple ar-
gument shows that (1.3) is impossible. This establishes result (A).
The proofs of (B), (C), and (D) are equally easy.

LEMMA. For a given r, the number of solutions n of (2.11) hav-
ng r prime divisors 1is finite. Im fact, if P, D, ++*, D, are the
prime divisors of n in increasing order of magnitude, and if

(3.2) QT:(l—_;_Xl_%)...( __;117>
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where q, is the rth prime in the sequence of primes 2, 3,5, «+- (¢, =
2, ¢, = 3 ete.), then

(3’3) 27Qr §. K é 27‘ ’
K\t
(3.9) p <71 2 )

and for 1 =2,3, -+, 1,

p.-_1<pi<(r—z'+1)<1_£_ 11 >~1.
2r 2 Diy

Proof. The relation (3.1) gives

K - S | 2
n n

< t(n) + 2,
n

for n > 2. Hence K < ¢(n). Since by Theorem 2, n is square free,
N = D, Py ***, Pry 80 that t(n) = 2". Hence K < 2".
In the next place,

K > o 9(0)
n

:2fﬁ(1— 1)22?@,.

i=i

Y

This completes the proof of (3.3). To prove (3.4), we note that
n

=1 i

>2r<1_i_..._ 1>.
D, D,
Hence,
1-E Lo,
2 D p. D

and this gives

Again, using
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and proceeding as before, we get

(3.5) p< P < (r — 1)(1 - f ;1 >_1 .

Continuing this process, we obtain

(3.6) po<m<tr-2(1- - L 1),
2 Y21 Y2
and finally,
K 1 1 -1
3.7 <p<(1-K_ 1 _ .. _ ‘
&0 g <p<< 2 p pr_x)

This establishes (3.4).

For a given 7, (8.8) shows that K can take only a finite number
of values, and (3.4)-(3.7) show that p, p,, ---, », can take only a
finite number of values. Thus for a given 7, the congruence (1.3)
has got only a finite number of solutions, since for a given r the
upper and lower bounds for K, p, P, ---, p, are fixed by the rela-
tions (3.3) and (3.4). The actual solutions corresponding to any given
 can be obtained after a finite number of trials. Following this
method, we have obtained the following results. (The details of
the numerous computations involved in the proofs of Theorems 3
and 4 below are available with the authors.)

THEOREM 3. Any composite solution n >4 of (1.3) must have
at least 4 distinct odd prime factors.

THEOREM 4. For the congruence (1.3) we have the following:
(3.8) If K=1or 3= K <14, there are no solutions.
3.9) If K =2, the only solutions are all the primes and 4.
(8.10) If K =15, then r =4 or 5.
(3.11) If 17 = K £ 29, then r = 5.
(8.12) If K =30 or 31, then r =5 or 6.
(8.13) If 33 < K <58, then r = 6.
(8.14) If 59 <K <63, then r =6 or T.
(8.15) If 66 < K < 116, then r = 1.
(8.16) If 117 = K <127, then r =T or 8.
8.17) If 129 < K =< 230, then r = 8.
(8.18) If 231 < K < 255, then r = 8 or 9.
(8.19) If 257 < K < 457, then r = 9.
(3.20) If 468 < K < 551, then r = 9 or 10.
(3.21) If 513 £ K < 909, then r = 10.
(3.22) If 910 < K <1023, then r = 10 or 11.
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Proof. We illustrate the proof for the case when = is odd.
Using the lemma, we have

2’2K>2*<1-—%1—)<1— ;2)---<1—%)

(- 30 Dla- B0 4) (- )

on using part (B) of Theorem 2 and Theorem 3. Giving K successive
integral values and examining the consistency of the resulting in-
equalities while keeping in view the restrictions of Theorem 2, we
get the results of the theorem.

REMARK. Any solution » of (3.1) satisfies the relation

6480
19019

2" < Ke log (1 + log™ %)

where v is Euler’s constant, » is the number of distinct prime fac-
tors of n and ¥ = ¢,,;. To show this, we note that

o = K"
im < K25

K- O ) O )

on using Theorems 2 and 3. Hence

where Q,.; is defined as in (3.2). We now use the estimate given
by Rosser and Schoenfeld [3, Theorem 8, Corollary 1] for Q;}; namely
Qs < e log (1 4 log™? x), where © = ¢, and obtain the stated result.

In the next theorem, ¢, denotes, as already noted, the uth prime
in the sequence of primes ¢, =2, ¢, = 3, +-

THEOREM 5. Let K and m be given and let q, be the smallest
prime factor of n which is a solution of the simultaneous equations

(3.8) s(n)t(n) + 2 = Kn

3.9 t(n) = mK .

Then n has a prime factor at least as large as
q7 + O(u™exp — log® u)

where b is any number < 3/5.
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Proof. By Theorem 2, n is square free. Let it have r distinet
prime divisors.

Then A. Walfisz [5, Satz 4, p. 187] has shown that if z(x) de-
notes, as usual, the number of primes < #, and

lix = Sx dt ,
z log ¢

then
(x) = li(x) + O(x{exp — A log®® z(log log z)™'7%}) ,
where A is a positive constant. It follows that
n(x) = li(x) + O(x exp — log® x)

for all ¢ < 3/5. By using a standard argument, we can show that

Z%————loglongLc+O(eXp—log"x),
9=
g varying over primes.
It follows that
1 1 1 1 1
1 —_t\=_s L —1 Lty _ 2+ =
5 -toe(l-r)=m o+ S{-loe(1-5) =4+ o)

= loglog # + ¢ + O(exp — log® x)

for all a < 3/5, where ¢ is an absolute constant (not necessarily the
same as the ¢ used before).
Hence for any given h for which & = O(z™), we have

s<gSeM+h

1
(3.10) > — log (1 - 71_)
= log log (z™ + &) — log log  + O(exp — log® x)

for all a <38/5. If we choose h = 2™ exp(— log® x), where b <a < 3/5,
we get

zSq=a™-+h

_log(l__l_) — log m + &Xp —log’s
q m log &

X O{ exp — 2log’ # + O(exp — log® a;)} ’
log x

and this is greater than log m for all sufficiently large . Again, if
we take h = —x™exp (— log® x) where b < a < 3/5, then
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— log (1 — l) =logm — exp(— log’ z)
q m log x

rsg=a™+h

+ O(exp (— 2log" x)) + O(exp(— log® %)),
log z .

which is less than log m for all sufficiently large x. Hence, if g(x)
is the smallest number such that

S —log(l—%—)glogm,

r5g9sgi{x)

then g(z) = 2™ + O(x™ exp (— log® #)) for all @ < 3/5. Now going back
to the relation

2¢(m) + 2= Kn .
This gives, with m = 27/K, the result
m + 2/¢(n) = n/¢(n) .

Taking ¢, to be the smallest prime divisor of #, let the integer wv
be defined to be the smallest integer with the property

m < I %
=y — 1
that is,
> —log(l——l—>>logm.
IyuS9=qy q

Then it follows that # must have a prime factor other than g, and
at least as large as ¢,. The previous investigation shows that,

¢, = qv + O(g7 exp (— log® (¢2))) ,
that is,
¢, = q™ + O(u™exp (— log® u)) for any b < a < 3/5.

Hence, we have proved the theorem.
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