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BRYAN E. CAIN AND RICHARD J. TONDRA

This paper establishes the existence of a domain (open
connected subset) B of the complex plane C such that for
every domain Ω c C and every compact set K c Ω9 there is
a biholomorphic embedding e: B -» Ω, such that K c e(B) c
cl [e(B)] c Ω.

1* Introduction* Let Ωx and Ω2 be domains (i.e., open connected
sets) in the complex plane C such that cl Ω, c Ω2 (cl = closure). A
domain Ω is a biholomorphic approximation of Ωx with respect to Ω2

provided that there exists an invertible holomorphic function e defined
on Ω such that

cl Ωx c e(Ω) c cl [e(Ω)] c Ω2 .

The mapping e is a biholomorphic embedding (δ/t-embedding) of Ω
into Ω2. (Ω may also be considered a biholomorphic approximation
of Ω2 with respect to £?x.)

Homeomorphic domains may, of course, be biholomorphically
inequivalent, and, moreover, may not even be close biholomorphic
approximations of each other. For example, let A(r, s) = {zeC:r <
(z I < s} when 0 < r < s < oo. Suppose that 0 < £ < 1 < £ < ° O and
that e is a δ/^-embedding of A = A(r, s) such that

cl A(l, ί) c e(A) c cl [e{A)\ c A(l - ε, t + ε) .

By taking the modules of these ring domains (cf. [1]) we obtain the
inequality t < s/r < (t + ε)/(l — ε) which is precisely the condition r
and s must satisfy for such an embedding e to exist.

Our main result establishes the existence of a domain BaC
which is a biholomorphic approximation of every bounded domain Ωι

with respect to every domain Ω2 containing cl£?le

2. The main theorem* Let C denote the Riemann sphere.

THEOREM 2.1. There exists a domain BaC such that for every
domain Ω c C and for every compact set KcΩ other than C there
exists a biholomorphic embedding e\B—>Ω such that Kce{B)d

REMARK. Actually such an embedding will exist if Ω is any
connected Riemann surface (without boundary) and K czΩ is any
planar compact surface other than C. ("Planar" means homeomorphic
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to a subset of C.) Indeed, by the trianguability of Ω there must
exist a planar domain Ωo such that Kc:Ωoc:Ω, and so it suffices to
consider the planar case.

The following theorems are corollaries of Theorem 2.1.

COROLLARY 2.2. Let KΦ C be a compact connected subset of
a domain ΩaC. Then K = Π£=i Bi where each Bi is bh-equivalent
to B and cl Bi+1 c Bt for i = 1, 2,

COROLLARY 2.3. Let Ω Φ φ be a domain in C. Then Ω = UΓ=i Bi
where each Bt is bh-equivalent to B and cl Bt c Bi+1 for i — 1, 2, .

3* Proofs. For each a e C and r > 0 set D(a, r) = {z: \ z — a \ < r)
and let D(a, r) denote cl D(a, r). Set D = D(0,1). A circle {z: \z — a\ = r}
will be called "rational" provided that Re α, Imα, and r > 0 are
rational numbers. The topological boundary of a domain Ω will be
denoted dΩ.

To construct B consider the domains Ω satisfying: (1) dΩ has
finitely many components, (2) each component of dΩ is a rational
circle, (3) cl Ω c D and its outer boundary is centered at the origin.
Let Elf EZ1 be an enumeration of these domains. Let s3- be the
radius of the outer boundary of Es and let φs be the linear fractional
transformation of D onto H = {z: Re z > 0} which carries — 1 to 0, + 1
to oo, and — sj to 1 if j = 1 and to ^ ^ ( s ^ ) if j > 1. Let 5 =

To show that B has the desired properties, we prove the follow-
ing lemma using the "small mesh grid" technique (often employed
in texts on function theory), rather than the theory of trianguability.
A bounded domain Ω czC will be called a Jordan domain if dΩ con-
sists of finitely many disjoint Jordan curves.

LEMMA 3.1. Let K be a compact subset of a domain Ω c C.
Then there exists a Jordan domain Ωo such that KcΩQc:clΩoc:Ω.

Sketch of proof. Since Ω is connected, there exists a connected
compact set Ko such that KaK0(zΩ. Thus we may assume that K
is connected. With r picked so small that [K + 5(0, l/2r)] c Ω let L
be the union of those squares of a grid of squares with edge length
r which intersect K. If a 6 L is a vertex of precisely two squares of
L select the positive number sa < r/2 to be so small that D(a, sa) c Ω.
Let Lo denote the union of all the D(a, sα)'s. Then straightforward
arguments show that ΩQ — int (L U Lo) is the desired Jordan domain.

Now let Ω and K be as described in Theorem 2.1. Lemma 3.1
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provides a Jordan domain Ωo such that iΓ c 42O c cl 42O c i2. According
to Theorem 2 page 237 of [2] there is a 6fe-embedding h of Ωo into
D such that (1) the outer boundary of h(Ω0) is 3D and (2) d[h(ΩQ)]
has finitely many components and each is a circle. Each of the
circles bounding h(ΩQ) can be "approximated" arbitrarily closely by
a rational circle which lies in h(Ω0). We require that the approxi-
mation to the unit circle be centered at 0. Since h{K) is a compact
subset of h(Ω0), when the approximations are close enough, the
approximating circles will bound a domain which contains h(K).
This region, by its definition, is one of the Es% say Ek. Then

h(K)c:Ekciφk

1(B)czh(Ω0)

and so applying h'1 will establish Theorem 2.1.

To prove Corollary 2.2 we let Bι = e£B) where eι is the bln-
embedding of B such that K c B1 c cl B1 c Ω. For ί > 1 we let G*
be the component of [K + D(0, l/(i — 1))] π 2?<-i which contains iΓ,
and we set Bt = e<(J5) where e* is the 6λ-embedding of B, given by
Theorem 2.1, such that i Γ c ^ c c l £, cG*.

To prove Corollary 2.3 we pick ae Ω and for large n we can let
G» be the component of {z: dist(z, C\Ω) > 1/w and \z\ < n} which
contains α. Since c\Gn is a compact subset of Gn+1 there exists
a δΛ-embedding ew: £ -> GΛ+1 such that 5% = en(B) 3 cl GΛ. That Ω =
UGW (and hence Ω = U J5n) follows from the arc connectedness of
£?. These 2?,/s are the required domains (except for re-indexing).

4* Some applications to holomorphic extension problems* Let
Kc C be compact and let / : K—*C. It is easy to extend / to a
holomorphic function F defined on a domain containing K (caution:
domains are connected) if there exist: (1) a domain Ω, (2) a biholo-
morphic function e on Ω such that Kae(Ω), and (3) a holomorphic
extension G oΐ g = foe \e-ι{K) to all of Ω. Indeed F = Goe"1 is the
required extension. Conversely if / has such an extension F the
existence of Ω, e, and G is trivial. For let the domain Ω be the
domain of F, set e(z) = 3, and take G = F. Thus we have an
equivalent formulation of the problem of holomorphically extending
a function /: K—>C to a domain containing i£\ Theorem 4.2 shows
that another equivalent formulation is obtained when in the discus-
sion above the variable domain Ω is replaced by the fixed domain B.
We first show that for a more restricted class of sets K this exten-
sion question is very naturally formulated with D in the role of Ω.

THEOREM 4.1. Let KaC be compact and let f:K-+C. Suppose



344 BRYAN E. CAIN AND RICHARD J. TONDRA

that K and C\K are connected. Then there exists a holomorphic
extension F of f to a domain containing K if and only if there exist
(a) a bh-embedding e of D such that K c e(D) and (b) a holomorphic
extension G of g = foe |β-i ( ί ) to all of D.

Proof. Since the "if" part of this theorem is treated in the
discussion above we confine our remarks to the "only if" part.
Assume that the extension F exists, and let Ω D K be its domain.
It suffices to find a δλ-mapping e of D such that K c e{D) c Ω. This
is trivial if K is a singleton: so we assume K is not a singleton.
Then the Riemann Mapping theorem shows that C\K is ^-equivalent
to D (it is simply connected because K is connected). Let h: C\K—>D
be the Riemann mapping. Since h~ι{D{Q, r)) is simply connected for
0 < r < 1 we know that Vr = C\h~ι{D(0, r)) is nonempty, open, and
simply connected for 0 < r < 1. Thus each Vr with 0 < r < 1 is
δ/fc-equivalent to D. Since h(C\Ω) is a compact subset of D it lies in
D(0, s) for some s < 1, and the Riemann mapping e of D onto Vs is
the required map.

If in Theorem 4.1 D is replaced by B the assumption that K
and C\K are connected may be dropped.

THEOREM 4.2. Let KaC be compact and let f:K-+C. There
exists a holomorphic extension F of f to a domain containing K if
and only if there exist (a) a bh-mapping e of B such that K c e{B)
and (b) a holomorphic extension G of g = foe |e-i(iΠ to all of B.

Proof. As in the proof of Theorem 4.1 the "if" part has already
been settled and we begin the "only if" part by letting Ω z> K be
the domain of F. An application of Theorem 2.1 gives a bh-embed-
ding e of B such that K c e(B) c Ω. This is the required mapping.

REMARK. Comparing Theorems 4.1 and 4.2 tempts one to con-
jecture the existence of a sequence of domains D = Ωl9 Ω21 , Ω^ = B
such that C\Ωn has n components and for which Theorem 4.1 will
remain true when it is modified by: (1) Replacing its second sen-
tence with "Suppose K is connected and C\K has n components", and
(2) Replacing D with Ωn. The discussion in the introduction shows
that this conjecture fails, since for n = 2, Ω2 must be δ^-equivalent
to A(r, s) for some r, s with 0 ̂  r < s ^ oo and so Ω2 cannot be
embedded between A(l, t) (the domain of /) and A(l — e,t + e) (the
domain of the extension F) unless t < s/r < (t + ε)/(l + e).
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