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In a recent paper, R. V. Kadison and D. Kastler studied
a certain metric on the family of von Neumann algebras
defined on a fixed Hubert space. The distance between two
von Neumann algebras was defined to be the Hausdorff dis-
tance between their unit balls. They showed that if two von
Neumann algebras were sufficiently close, then their central
portions of type K(K= I, Iny II, IIU 11^, III) were also close.

In the introduction to their paper, they conjectured that
neighbouring von Neumann algebras must actually be uni-
tarily equivalent. It is the purpose of this paper to prove
this conjecture in the case that one of the algebras is of type
I. The question of "inner" equivalence is left open. (Can the
unitary equivalence be implemented by a unitary operator in
the von Neumann algebra generated by the two neighbouring
algebras?)

2* Notation and definitions* If S>f is a set of bounded linear
operators on the Hubert space £%f, then we use S$fr to denote the
set of all bounded linear operators on £%f which commute with
every element of Ĵ C We use the notation J ^ to denote the set of
all operators in s$f whose bound is less than or equal to 1. The
algebra of all bounded operators on 3(f is denoted by . ^ ( ^ ) . If
J ^ is an algebra of operators on £ϊf with identity, then the identity
of j y is denoted by \ y. However, the identity operator on 3ίf
will be denoted by 1. For each subset ^ of .^{£ίf) and bounded
operator A on £(f we let

| | A - J H I =inf {Il-A — JP| | : JF7 in

DEFINITION 2.1. If j y and ^ are linear subspaces of

^\\ =sup{||i4 - ^ | | , || B- j#[\\: A in j*r, B m.0γ] .

If & is a subset of ^ ( ^ ) , then the closure of 6^ in the
ultraweak topology is denoted by S^~. Also, co Sf will denote the
set of convex linear combinations of elements of ,S^.

As in [4], we make frequent use of the monotone increasing
function a: [0, 1/8] -> [0, 5/8] defined by a(a) = α + 1/2 - (1/4 - 2α)1/2.
We also make use of the following estimates for a:
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for n ^ 10, (n - 4)2 - 16 ^ Γ(Λ - 4) - — I ' so that
L n Λ

a(λ) =
n I 2n

DEFINITION 2.2. Let G be a topological group and denote by
BC(G) the Banach space of all bounded complex valued continuous
functions on G with the supremum norm. A right invariant mean
on G is a linear functional μ on BC(G) such that

( i ) μ(J) ^ 0 f or / ^ 0 and / in BC(G)9

(ϋ) Kfg) = Kf) for all / in BC(G) and all g in G where fg(h) =
f(hg) for h in G,

(iii) μ(ί) = 1.
A mean on BC(G) is a linear functional on BC(G) satisfying (i) and
(iii) above. A Dirac mean on G is a linear functional on BC(G) of
the form mg(f) = f(g) for some fixed g in G and all / in BC(G).
If G has a right invariant mean we say that G is amenable.

3* The main theorem. The crucial step in proving the main
theorem is Lemma 3.2. The proof of Lemma 3.2 is really just an
application of the fixed point property for amenable groups. (See
Theorem 3.3.5 on p. 55 of [2].) However, since the fixed point
property is usually stated for locally compact groups and the group
we wish to apply it to is far from being locally compact, we have
(essentially) incorporated the proof of the fixed point property into
the proof of Lemma 3.2. Lemma 3.5 (whose proof is quite trivial)
is inserted solely to be able to state the main theorem in its most
general form.

LEMMA 3.1. Convex combinations of Dirac means are weak-*
dense in the set of all means in the Banach space dual of BC(G)
where G is any topological group.

For a proof of this fact see §1.1 of [2].

LEMMA 3.2. Let Sx? and & be C*-algebras with identity on a
Hilbert space ^f such that || J^f — & || < a (^ 1/10). Suppose that
the unitary groups of Jϊf and £@ each contain an amenable sub-
group (given the norm topology) whose linear span is ultraweakly
dense in the algebra. Then \\ S/Ί^ — &Ί& || < 4α + a(a). If sf
and & each have the same identity, 1, then we have || J ^ Ί — ^ ' 1 1 | <
4a.
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Proof. Let TO be in (Jtf"l^\ and let G be an amenable subgroup
of the unitary group of & with the property described above. Let

& = co{[7* TQU: U in G}~ .

Then £/* is an ultraweakly closed convex subset of the unit ball of
&(3ίf) and so is ultraweakly compact. Moreover, ^ £ 1 ^ ( ^ ) 1 ^ .

Now, let U in G be fixed and let || Szf - & || < b < a so that
there is an operator V in S^[ such that || U — V\\ < b < a. Then,

u*τou- mi ̂  ii u*τQu- v*τou\\ + ii v*τou- F*ΓOF||

+ || F * F T 0 - Γ o | | < 6 + 6 + | | F * F - M |

^26 + || V^V - V*U\\ + || F * ί 7 - U*U\\

+ || U*U- 1^ || <26 + 6 + 6

Where | | 1 ^ — 1^| | < α(α) can be seen by the following argument.
By Lemma 6 of [4] there is a central projection P in & such that
|| \sr — P || < a(a). Also, there is an A in J ^ such that || A — 1& \\ <
a. So, we have || P - 1^ || ^ || Pl^ - 1,L II + II1Λ - U II +
|| A - 1^ II < α(α) + 2α < 1. Thus, P = 1^ and || 1^ — 1^ || < α(α).
Therefore, by the previous argument S^ is contained in the follow-
ing set

{T in U^{^)U\ || Γ|| ^ 1 and || Γ - Γo | | ̂  4δ +

Now, for any x, y in έ%f define a continuous bounded function
fxy on G via, fxy(U) = (U*T0Ux, y) for i7 in G. Let ΣUλ*mσj fc

(where Uk is in G for k = 1, , w) be a convex combination of Dirac
means. Then, for any x, y in ^f we have

m{fxy)= Σ ^mϋk(fxy) = Σ λfc/β,(t^) - Σ MUtTQUkx, y) = (Tx, y)
Λ = l fc = l fc = l

where

Γ = Σ ^kUξTQUk is in ^ .
AΣ
A r = l

Let μ be a right invariant mean on G and let {mδ} be a net of
means each of which is a convex combination of Dirac means and
such that {m,} converges to μ in the weak-* topology on the dual
of BC(G). For each δ, let Tδ be in ^ such that mδ(fxy) = (Tδx, y)
for all x and y in <%t Since ^ is ultraweakly compact we can
choose a subnet {Tδ,} which converges ultraweakly to an operator
T in S^. Then, for all x and y in Sίf and each U in G we have
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(U*TUx, y) = (Tϋx, Uy) = lim(Ts,Ux, Uy)
δ'

= lim (fUxϋy) = μ(fuxuv) = μ((fxy)σ) = μ{fxy)
δ'mδ'

= lim (/.,) = lim (T,.x, y) = (Tx, y).
δ'm§' δ'

Since the linear span of G is ultraweakly dense in &, we have
that T is in &' and since T is in Sf we have that T is in &Ί&,
|| T\\ ̂  1 and || ϊ7 - Γo|| ^ 46 + a{a). Similarly, if we start with an
So in ( ^ Ί ^ X we can find an S in (J^'l^X such that \\S — So\\ ^
46 + a(a). Therefore, || J ^ Ί ^ - &Ί& \\ ^ 46 + a(a) < 4α + a(a).
Clearly, if Jzf and & have the same identity, 1, the above proof
shows that || j * " l - ^ ' 1 1 | < 4α.

LEMMA 3.3. Let s^ and & be von Neumann algebras on a
Hilbert space ^f such that \\ Szf — & \\ < a (^ 1/12). Then the
centre of S^f is *-isomorphic to the centre of &.

Proof. Let P be a projection in the centre of Ĵ C Then by
Lemma 6 of [4], there is a central projection Q in & such that
| | P — Q || < oc{a) < 1/3. If there were another central projection E
i n & s u c h t h a t \\P - E\\ < a(a) t h e n \\E -Q\\< 2a(a) < 2/3 s o
that E = Q. Let φ be the map from the central projections of Jzf
to the central projections of & defined by | |^(P) — P | | < a{a) for
all central projections P in Jzf. By the symmetry of the situation
it is easily seen that φ is one-to-one and onto the central projections
of &?.

Now, let P and Q be central projections in J ^ Then,

| φ(PQ) - φ(P)φ(Q) \\ £ \\ φ(PQ) - PQ \\ + \\ PQ - 9{P)Q ||

+ II^(P)Q -Φ(PMQ)\\ < 3α(α) < 1, and so φ(PQ) - φ{P)φ{Q)

Since P ^ Q if and only if PQ = P; φ(P) ^ ^(Q) if and only if P ^
Q. Hence, φ is a lattice isomorphism from the central projections
of Jzf onto the central projections of &. Therefore, φ extends to
a ^-isomorphism (also denoted by ψ) of the algebra generated by
the central projections in Ssf to the algebra generated by the
central projections in &. By inspection, φ is an is isorαetry and so
extends to a ^isomorphism of the centre of J ^ onto the centre of &.

The following lemma is due to F. Riesz (see [1], p. 148). A
proof is provided here for the sake of completeness.

LEMMA 3.4. Let X be a normed linear space and let Y be a
closed proper subspace of X. For any t, 0 < t < 1 there is an xt

in X, ||gf || = 1 such that
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in f{ | |^ -y\\:y in Y}^t .

Proof. Let xx be in X but not in Y. Then, inf {\\x1 — y ||: 3/ in
= d > 0. Choose y0 in F such that

SS-f Let a, =

Let y be any vector in F, then

l l r - 77II -

iKί y\\ —

1 1
7r 11 χί ~~ U/o + 11 #i ~~~ Vo I \y) 11 = T ; — T Γ ^ — *

LEMMA 3.5. Let S%f and & be C*-algebras on a Hilbert space
such that (I Sxf — & \\< 1/2. // jtf is a von Neumann algebra,

then .ζ@ is a von Neumann algebra.

Proof. By Lemma 5 of [4] we have || Jzf - &~ || < 1/2. There-
fore \\.^ — &~\\<1. But if & Φ &- then by Lemma 3.4
II & - &~ II ̂  1. Hence, & = ^~.

THEOREM 3.6. Let s^ and & be C*-algebras on a Hilbert space
such that || S>f - & || < a (^ 1/25618). If S^f is a type I

Neumann algebra then & is unitarily equivalent to

Proof. Let Pn(Qn) be the largest projection in the centre of
such that PnJ^f{Qn^) is of type In or 0 and let PL(Q'm) be

the largest projection in the centre of Jtffls,(0Ί&) such that
P i J ^ ' M Q i ^ ' U ) is of type Im or 0.

Since Jzf and ̂  are both von Neumann algebras by Lemma
3.5 and are both type I by Lemma 10 of [4] we have by the proof
of Corollary 6.5 of [3] that the unitary groups of J ^ and & each
have amenable subgroups of the type described in Lemma 3.2. Hence,
by Lemma 3.2 || J ^ Ί ^ - ^ ' 1 ^ | | < 4α + a(a) < 1/3660. Thus, by
Lemma 15 of [4], not only do we have \\Pn — Qn\\ < a(a) but also
II PL - QL \\< a(4a + a(a)). So, we have || P'mP% - Q'mQΛ \\ < a(a) +
a(ia + a(a)). If we let Pmn = Pf

mPn and Qmn = Q'mQn then we have
\\P^n^r - Qmn^ || < a + a(a) + a(4a + a(a)) < 1/12. By Lemma 3.3,
the centres of these two algebras are * isomorphic. Therefore, by
Theorem 8, p. 90 of [6] j ^ is unitarily equivalent to &.

THEOREM 3.7. Let £ίf be a separable Hilbert space and let
and & be C*-algebras on £ίf each containing the identity of
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such that II Sf — g& || < a (^ 1/32). // jzf is a von Neumann algebra
which is a type I factor, then & is unitarily equivalent to

Proof. If Jtf is a factor of type ϊn, then so is & by Theorem
B of [4]. If J * " is a factor of type Im, then || j * " - ^ ' | | < 4α ̂
1/8 so again by Theorem B of [4], &f is a factor of type Im. Hence,

and ^ are unitarily equivalent.

REMARKS 3.8. By Theorem 3.6, if Szf is maximal abelian on its
essential subspace, then & is maximal abelian on its essential sub-
space and so the ^isomorphism between j ^ and & defined in
Lemma 3.3 is actually spatial. Using the fact that J ^ Ί ^ = Ssf and
&Ί& = & it is not too hard to show that any unitary which
implements this particular isomorphism can be extended to a unitary
on £{f which is in the von Neumann algebra generated by Szf and
&. Thus, it seems highly likely that neighbouring type I von
Neumann algebras are actually "inner" equivalent.

As noted on p. 421 of [5], hyper finite factors satisfy the hy-
potheses of Lemma 3.2 and so Lemma 3.2 may be of some help in
analysing the hyper finite case.

ACKNOWLEDGMENTS. I would like to thank Professors R. V.
Kadison and J. R. Ringrose for their advice and encouragement
while I was working on this paper. In particular, I would like to
thank Professor Ringrose for pointing out that all type I von
Neumann algebras satisfy the hypotheses of Lemma 3.2 and not just
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Added in proof. In a paper entitled Perturbations of Type I von
Neumann algebras to appear in J. London Math. Soc, E. Christensen
proves a much sharper version of Theorem 3.6 which answers the
question of "inner" equivalence affirmatively. The methods are quite
different from those of this paper.
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