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THE NONMINIMALITY OF THE DIFFERENTIAL CLOSURE

MAXWELL ROSENLICHT

The differential closure of a given ordinary differential
field & is characterized to within (differential) k-isomorphism
as a differentially closed (differential) extension field Eof k
which is k-isomorphic to a subfield of any differentially closed
extension field of k. It has been conjectured that, in analogy
to the cases of the algebraic closure of a field and the real
closure of an ordered field, the differential closure of any
differential field % is minimal, that is, not k-isomorphic to
a proper subfield of itself. The conjecture is here shown to
be false.

Let k& be a differential field (ordinary, that is with one specified
derivation) of characteristic zero and let k{y} be the differential ring
of differential polynomials over & in the differential indeterminate y.
Recall that the order of a nonzero differential polynomial in k{y} is
simply the smallest integer » = —1 such that the differential poly-
nomial involves none of the derivatives y*", y"+», .... According
to Lenore Blum’s definition, k is differentially closed if, for any
f, 9€k{y} with g of smaller order than f, there is a zero of fin k
that is not a zero of g. For any differential field %, a differential
closure of k is a differential extension field k& of % that is differ-
entially closed and that can be k-embedded in any differentially
closed differential extension field of %. Blum has used the methods
of model theory to show the existence of % and to derive a number
of its properties [2], appreciably extending and simplifying a theory
initiated by Abraham Robinson [5]. The uniqueness of k to within
differential k-isomorphism follows from a recent result of Shelah [7].
The differential closure % of % is called minimal if there is no (differ-
ential) k-isomorphism of k& with a proper subfield of itself. One of
the unsolved problems of the theory has been to determine WhetAher
or not k is always minimal. Sacks has conjectured [6] that k is
minimal over %k in the special case & = Q. It is proved here, among
other things, that this conjecture is false. It was learned after the
completion of this paper that this result has also been proved by
Kolehin [4] and announced by Shelah [8]. The author is greatly
indebted to Lenore Blum for calling his attention to the problem
and for numerous conversations on her work.

We begin by recalling some facts outlined in a recent paper of
Ax [1]. Let kc K be fields. There is a K-module 2%, the space
of differential forms of degree one of K/k, and 2 k-linear map d: K —
Q% such that d(xy) = ady + yda for all z, yc K (and these can be
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constructed just by insisting on universality for these properties)
which is the usual dual space of the K-module of k-derivations of
K, a vector space over K of dimension tr. deg. K/k if the latter
is finite and the field characteristic is zero. For any derivation D
of K such that Dk ck, there is a map D' Q% — 2% (most easily
constructed using the universal properties of 2%,.,) which is charac-
terized by the following properties: for all w, ne 2%, and all fe K
we have DY(w + 7)) = D'w + D', D'(fw) = (Df)w + f(D'w), D'(df) =
d(Df). '

The following generalizes a lemma in Ax’s paper [1, Lemma 3].

LEMMA 1. Let kK be fields of characteristic zero, D a deriva-
tion of K such that Dk ck, C the D-constants of k, u and t elements
of K that are algebraically dependent over C. Consider the k-differ-
ential of K given by udt. Then D'(udt) = d(uDt).

For D'(udt) = (Du)dt + udDt, while d(uDt) = (Dt)duw + udDt, so
we have to show that (Du)dt = (Dt)du. Let U, T be indeterminates
over C and let F(U, T)e C[U, T] be an irreducible polynomial such
that F(u,t) = 0. If w is transcendental over C then ¢ is algebraic
over C(u) and F'(u, T) is irreducible over C(u), so that (0F/0 T)(u, t)+0.
Similarly if ¢ is transcendental over C then (0F/0U)wu, t) = 0. The
relation (Duw)dt = (Dt)du follows from the equations

oF oF

- =0,
aU(u, t)ydu + aT(u, t)di
oF oF —

unless OF/0U)(u, t) and (0F/0T)(u, t) are both zero, which can happen
only if u and ¢ are both algebraic over C, in which case both du
and dt are zero.

PROPOSITION 1. Let k be a differential field of characteristic
zero, C its field of comstants, x an indeterminate over C, and f(x)
a nonzero element of C(x) such that 1/f(x) has the form

1 & duw)oe . ov)
@ A uw

where ¢, «+-, ¢, €C and wu(x), ---, u,(x), v(x)eC(x). Let x, =, be
elements of a differential extension field of k whose constants are
all algebraic over k, each of w,, x, being a solution of the differential
equation ¥’ = f(x), and suppose that x., x, are algebraically dependent
over k. Then either x, or x, is algebraic over k or (v(x,)) = (v(x,)) .
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The field K = k(x,, x,) is a differential extension field of %, so for
j =1, 2 we may apply the Lemma to dux;/f(x;)€ 2%, and D ="' to get

dux; Dz;

Dt i y=d i)=DA)=0.
<f(ﬂ%-)> (f(wj)> M

Assuming that neither x, nor x, is algebraic over k, each dx;/f(z;) is

a nonzero element of the one-dimensional K-module 2%, so that we
can write dx,/f(x,) = edw,/f(»,), for some nonzero c€ K. Hence

0= D(58) = D(efmy) = @Oy + D7) = Doy

so that D¢ = 0. Thus ¢ is a constant of K, hence, by assumption,
algebraic over k. Now for 7 =1, 2,

—(x;)
dx; _ Zﬂ o )
! ! o / il
S J) i=1 ui(xj) ( ) E,c n(253) + dw(z;)
so that

3 0, T%) ((":;) + do(wy) = c(z . d“((”g) + dv(ml)>

From the well-known fact that a linear combination with constant
coefficients of normal differentials of third kind can be exact only if
it is zero (cf. [1, Prop. 2], which generalizes the usual residue con-
siderations) we deduce

&, duga,) du(x,) .
‘Z=1 % u,(2,) zz=lf u( l) do(w,) = cdv(w,) .

Thus

dv(w,) _  cdo(®,)
dw,/f(ws)  c(dw,/f(x,))

(v(z,)) = ( DT, = Z(xz)ﬂwz) =

_ dv(wl) _ ’
Tl O
Note that if C is algebraically closed, then any element of C(x)
can be written in the form prescribed for 1/f(x) in Proposition 1, ag
is seen by looking at partial fractions with respect to C[z]. Note
also that since (v(x;)) = (0v/ox)(x;)x; = (v/ox) ;) f(x;), 7 =1, 2, the
conclusion of Proposition 1 can be written

(226) " Zc% ) (i”—(m))‘lio@z3
ox u(2,) ox =0 ) '
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REMARK. The condition in Proposition 1 that z, and x, be ele-
ments of a differential extension field of & whose constants are
algebraic over k will certainly be satisfied if all the constants of
k(x, x,) are algebraic over C, and this latter condition will automa-
tically hold for most f(x) of interest, in virtue of Lemma 2 and
Proposition 2 below. For the same reason, the condition on constants
in the following Corollary is superfluous. But we do not need this
information for the nonminimality proof.

COROLLARY. Let k be o differential field of characteristic zero,
and suppose that x,, x, are elements of a differential extension field
of k whose constants are all algebraic over k, both x, and x, being
solutions of the differential equation & = f(x), where f(x) s either
zf(w + 1) or & — 2’. Then if x, and x, are algebraicelly dependent
over k, either x, or x, ts algebraic over k, or x, = %,

First note that Proposition 1 is applicable since 1/f(x) is of the
correct form, namely either

z+1 __ 1 ox/ox

241 = oL
x x+ @ +6w
or
W)
1 _ 1 _L_L~a_x__x_+i<l)
-2 -1 = 2 (-1

For j=1,2, in the case f(x) = z/(x + 1) we have (v(x;)) = a; =
x;/(x; + 1), while in the case f(x) = #* — 2* we have (v(x;)) = (1/z;) =
—aj/xt = 1 — x5, so the Corollary follows directly from the Proposition.

Now let C be a differential field of constants. We shall show
that its differential closure C is not minimal over C. Let z be an
indeterminate over C, f(x) a nonzero element of C(x). For any
Ly Xy 0+, &, 1IN0 C, the differential equation ¢’ = f(y) has at least one
solution in € not annulling y—a)y —x) -+ (¥ — T). Hgnce the
differential equation ¥’ = f(y) has an infinity of solutions in C. Since
there are only a finite number of constant solutions of ¥ = f(y),
namely the zeros of f(y), we can find distinet nonconstant elements
%, @y +-+ of C such that o = f(z,) for all i =1,2 .-.. We claim
that in either of the special cases f(x) = x/(x + 1) or f(x) = &® — &%,
the set {x, @, ---} is a set of indiscernibles over C (or, in the termi-
nology of Sacks [4], a set of conjugates over C) and this fact will
prove the nonminimality of C over C [6, p.633]. What has to be
shown is that for any # =1, 2, --- and any distinct positive integers
i, +**, 1, the differential isomorphism class of (x;, ---, 2;,) over C is
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independent of the choice of 4, +--, 4,. Sincez! = f(z),1=1,2, ---,
it suffices to prove that the algebraic isomorphism class of (%, «- -, @,
over C is independent of the choice of %, «--, %,, which will certainly
be true if «,, -.-, x, are always algebraically independent over C.
Hence we are reduced to proving that =z, x, --- are algebraically
independent over C. As a preliminary, note that the constants of
C(z,, », ---) are among the constants of C, which are precisely the
algebraic closure C of C, an easy consequence of Blum’s theory [2].
We now assume that for a certain n =1,2, ..., the elements
%, By, -+, &, are algebraically dependent over C, and we have to
derive a contradiction. Taking » minimal and changing our notation,
if necessary, we may assume that no proper subset of {x,, ---, x,} is
algebraically dependent over C. If # > 1, then z,_, and %, are
algebraically dependent over the differential field C(x,, ---, z,-,) and
are distinet solutions of the differential equation z' = f(x), so the
previous Corollary implies that either «,_, or z, is algebraic over
Clw, +--, ©,_,), a contradiction of the minimality of %, while if » =1
we have #, algebraic over C, therefore a constant, again a contradic-
tion. This proves that =, x,, --- are algebraically independent over
C, and hence that € is not minimal over C.

It is of interest to generalize somewhat the argument of the
preceding paragraph. Let % be any differential field of characteristic
zero and let %, @, ---, , be distinet elements of a differential exten-
sion field of %, none algebraic over %, such that foreach¢=1,---, n
we have z; = f(x,), where f(x) is either z/(x + 1) or «* — 2°. Then
%, -+, %, are algebraically independent over %k and the constant
subfields of k(x, ---, x,) and of k are the same. To see this, we use
the argument of the preceding paragraph, supplemented by Lemma
2 and Proposition 2 below. The Remark following Proposition 1

enables us to follow the above proof literally to get «, -, 2,
algebraically independent over k, after which the equality of the
constant subfields of k(zx, ---, x,) and of %k is a direct consequence

of Proposition 2.

LEMMA 2. Let K be a differential field, algebraic over its dif-
ferential subfield k. Then the constants of K are algebraic over the
subfield of constants of k.

For let ¢ be a constant of K, let n = [k(c): k], and pick a,, - -+, a,€k
such that ¢*+a,c" '+ -+ +a,=0. Differentiation gives ale" ™ +--- +
a, =0, from which we deduce that each a; =0, so each ¢, is a
constant of k.

Lemma 8. Let k c K be differential fields of characteristic zero,
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CC & their respective subfields of constants, and suppose that k is
algebraically closed in K and that K is a finite field extension of k
of transcendence degree one. Then if C# &, C is algebraically closed
m F and € is a finite field extension of C of transcendence degree
one of genus at most that of K/k.

Start the proof by noting that since C =k N & and &k is alge-
braically closed in K, we have C algebraically closed in & Suppose
that C %= & and let te & t¢C. Then ¢ is transcendental over C,
and indeed over k. If also ue &, then ¢ and u are algebraically
dependent over %, so there exists an irreducible f(T, U)c k[T, U], T
and U being indeterminates over k, such that f(¢, ) = 0. The mini-
mal polynomial of u over k(¢) is f(¢, U), up to a factor in k(t), and
f(T, U) is unique, up to a factor in %, with the degree in U of
f(T, U) at most [K: k(t)]. Let f(T, U) = >..; a;t*w?, with each a,; €k,
and with at least one of the a,;’s equal to 1. Applying the deriva-
tion D of K, we get 3.,;(Da;)t'u’ = 0. Now 3.;(Da;;)T?U’ must
equal a multiple of f(T, U), necessarily by an element of k, and this
element of k& must be 0 since one of the a,’s is 1. Thus Da,; =0
for all 7, 7, so that each a,;€6kN & = C. Therefore u is algebraic
over C(t), of degree at most [K: k(t)]. Therefore % is algebraic over
C(t), with [Z: C(?)] < [K: k(t)]. It remains to prove the genus state-
ment, and here we give two proofs, each relying on well-known facts
about ground field extensions of algebraic function fields that may
be found in [3]. First, if w = fdg is a differential of first kind of
& |C, with f, ge &, then w can also be considered a differential of
K/k; in fact we have a natural injection of differentials 2., — 2%/
For any k-place P of K, if f, g are finite at P then w, considered as
a differential of K/k, is also finite at P. If either f or g is not
finite at P, then P induces a C-place p of &, and since w is finite
at p we can write w = fidg,, with f,, g,€ & both finite at p, so that
again o is finite at P. Therefore w, considered as a differential of
KJk, is of the first kind. Let w,, ---, ®, be a C-basis for the space
of differentials of first kind of €°/C (9 = genus of ¥/C). If 0, ---, w,,
considered as differentials of K/k, are linearly dependent over %, then
there exist a,, -- -, a, € k, not all zero, such that ¢,w, + --- + a,0, = 0.
Suppose that we have such a,, ---, @,, with a minimal number of
nonzero @,’s, one of which is 1. Since each w,/w, € &, applying D to
a1(w1/0)1)+ et +(L,((Da/a)1) =0 we get (Dal)(wl/w1)+ v +(Da'g)(wy/w1) =0.
At least one Da, is 0, so that each Da, = 0, so each a,€ €. Thus
a,€ € Nk = C, contradicting the linear independence of w,, ---, @,
over C. Therefore w,, ---, ®, are k-linearly independent differentials
of first kind of K/k, so that the genus of K/k is at least g. For
the second proof of the genus statement, consider what happens
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when we extend the ground field C of the function field /C from
C to k. Since C is algebraically closed in %k, & @, % is an integral
domain, isomorphic to &[k] c K, and so the ground field extension,
which preserves the genus of Z&°/C, gives us &(k)/k. Since (k)
is a subfield of K that contains %, its genus is at most that of K/k.
This completes the second proof.

PROPOSITION 2. Let k be a differential field of characteristic zero,
with derivation D and constants C. Let k(x) be a pure tranmscen-
dental extension field of k, let f(x) be a nonzero element of k(x), and
make k(x) o differential extension field of k by setting Dx = f(x).
Suppose that 1/f(x) is of neither of the forms

ou(x)/0x nor ov(x)

(element of C) w(a) Pl

for u(x), v(x)e C(x). Then every constant of k(x) is in C.

To prove this, first assume that C is algebraically closed. Suppose
that not all constants of Z(x) are in C. By Lemma 3, the subfield
of constants of k(x) is an algebraic function field of one variable
over C of genus zero, hence, since C is algebraically closed, of the
form C(t), for some tek(x), t¢ k. Now consider the nonzero differ-
entials d¢ and dz/f(x) of k(z)/k. We can write dx/f(z) = adt, for
some & € k(x). Applying the operator D' on 25..,,,, We get D'(dz/f(x)) =
D' (adt) = (Da)dt + adDt = (Da)dt. By Lemma 1, DY(dxz/f(x)) =
d(Dx/f(x))=d(1)=0, so Da=0, so that a € C(¢). That is, dx/f(x) = adt,
with a € C(t). Now write dz/f(x) in the form

dr _ & dux)
@ )

with ¢, .-+, ¢, € C and wu,(x), - -, (), v(x) € C(z), which can be done
immediately by looking at the partial fraction expansion of 1/f(x)
with respect to Clx]. Using the logarithmic derivative identities

+ dv(x) ,

d@b) _ da  db = da*_ ,da
ab a b a® a
we can, if necessary, modify =,c¢, ---, ¢, u(2), -, ,(x) so that

¢, *++-, ¢, are linearly independent over the rational numbers Q.
Looking at the partial fraction decomposition of @ with respect to
C[t], we get an expression

adt = 3,7, %% 4 ay,

1
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where v, -+, 7, C and w, -, W,, ys C(t). Extend ¢, ---, ¢, to a
basis ¢, +«-, Cuy Cps1y Cussy ++ 7, ¢y Of the @Q-vector space Qc, + - +
Qc, +Qv, + - +Q7,. Using the logarithmic derivative identities,
we can modify m, v, -+, Ym, Wy, -+, Wy, S0 that the same expression
for adt holds with m = N, and v, =¢,/M, ---, 7y = cy/M for some
positive integer M. The above expression for dz/f(x) remains true

if we replace » by N, taking %,,,(&) = %,.,(x) = --- = 1. Hence we
may assume that in the displayed expressions for dz/f(x) and adt
we have m =mn, ¢, -+, ¢, linearly independent over @, and My, =

¢, -+, Mv, = ¢, for some positive integer M. From the equation
dx/f(x) = adt we now infer

| d((ue)"/w,) o,

& oy, T A =) =
At this point we again apply, in more precise form than was neces-
sary for the proof of Proposition 1, the argument about when a
linear combination of normal differential forms of third kind is exact
[1, Prop. 2] to deduce that each d((u;(x))*/w, and d(v(xz) — y) are
zero. (This conclusion can be directly verified in the present case
by expressing each (u,(x))¥/w, as a power product of irreducible
elements of %[x] and v(x) — y in terms of partial fractions.) Therefore
(@) [wyy -+, (Wa(@))*/W,, v(@),— Y € k, s0 that also D((w.(x))"/w,), - - -,
D((un(x)*/w,), D(v(x) — y)e k. Since w,, ---, w,, ¥y are constants, we
deduce that

(Dul(x))/ul(x)v ) (Dun(w))/un(x) ’ D’U(x) ek .

But u,(®), ---, u,(x), v(x) are in the differential field C(x), so that
(Duy (@) uy(), -+ -, (Duy(x)/u,(x), Dv(@)ekn Clx)=C. Now for any
() € C(x) we have Dg(x) = (04(x)/0x)Dx = (04(x)/0x)f(x). At least one
of the quantities (), ---, #.(x), v(z) is not in k, for otherwise
dx = 0, so at least one of

ou.(x)/ox 0u(@)[0 p 1y ou,,(x)/ox 0un(@)[0 5y 8’v(x)f(x)
Uy() ’ Un(%)

is a nonzero element of C, implying that 1/f(x) is of one of the
excluded forms. It remains to prove the Proposition when C is not
algebraically closed. Suppose that there are constants of k(x) that
are not in C. The differential field structures on %k and k(x) extend
uniquely to differential field structures on %(C) and (k(C))(z), C being
the algebraic closure of C, and we get constants of (k(C))(x) that
are not in the subfield of constants C of %(C), since k(x)n C = C.
Hence 1/f(x) is of the form a(au/ax)/u for some acC, ueC(x), or of
the form 1/f(x) = 0v/dx, for some ve C(x). Suppose first that 1/f(x) =
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a(0u/ox)/u, with ¢ and w as above. Take u, as we may, to be a
quotient of monic elements of C[x]. We shall be done if we show
that a€ C, ueC(x). For any o ¢ Aut (C(z)/C(x)) ~ Aut (C/C) we get
1/f(x) = a°(0u’/éx)/u’, so that a(ou/ox)/u = a’(ou’/ox)/u’, or

(0w’ jw)/ox)/(w’/u) = aja’ e C .

Writing w’/u as a power product of distinct monic linear elements of
Clz], we see that we get a nonconstant function on the left of the
equation for a/a’ unless u°/u = 1. Hence u° = u. Since this is true
for all o ¢ Aut (C/C), we get ueC(x), hence also acC@)nC =C,
showing 1/f(x) to be of the desired form. Suppose, finally, that we
have 1/f(x) = ov/ox, for some ve C(w). We may take v such that its
partial fraction expansion with respect to C[x] has constant term
zero. We wish to show veC(w). For any oe¢ Aut(C/C) we get
1/f(x) = (9v/ox)’ = 0v°/ox, so that dv°/ox = dv/ox. Hence v’ = v, and
since this is true for all o € Aut (C/C) we get ve C(x), as desired.

Clearly neither of the two special values for f(x) of which we
have made so much use, namely «/(z + 1) and 2* — &7, is of the special
form indicated in Proposition 2.
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