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ON AN INVERSION THEOREM FOR THE GENERAL
MEHLER-FOCK TRANSFORM PAIR

P. ROSENTHAL

Let PX(y) be the Legendre function of the first kind and
let I'(z) be the Gamma function. Then the general Mehler-
Fock transform of complex order k of a function g(y) is de-
fined by the equation

(@) = Ly(g) = 7~ sin h(mo)l"(% —k— w)

xI(G =k +io)| W) Prost)dy
1
the inversion theorem states
g =Lo(f) = S F@)PE. s .
0

It is stated on page 416 of I. N. Sneddon’s book ‘The Use of
Integral Transforms, (1972) that apparently a class of functions
g(y) for which this result is valid is not yet clearly defined.
The purpose of this paper is to define a class of functions
g(y) as well as a class f(x) and give proofs that the above
inversion formula hold for these classes.

Introduction. The theorem and proofs presented in the paper
are hasically a generalization of those in a paper of V. Fock [4] who
treated the case k = 0, the Mehler-Fock transform. Some applications
of the Mehler-Fock transform and general Mehler-Fock transform
are given in [7], [8]. Tables of these transforms are given in [6].

All integrals are taken in the improper (complex) Riemann sense.
2z ~ -+ co means x positive and sufficiently large, x ~ + 1 = sufficiently
close to 1,2 > 1.

THEOREM 1. Let G be the class of complex wvalued functions
such that ge G if and only if

1. 9y) =@ — D" (y), vy > 1, 9.(y) is twice differentiable and
continuous for y =1, the real and imaginary parts of ¢7(y) are of
bounded variation on any closed and bounded interval contained in
o >y = 1.

2. dg/dy* = O(y~@B—+®m=) o > 1 1/4 > &> 0, 0 = large order
relation, n = 0,1, 2 (the case » = 0 means g¢,).
Then L.(Ly9)) = 9,y > 1, |[Re k| < 1/4.
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Proof of Theorem 1.
LEMMA 1. Let
geG, ht) = S:p(t, q)dq, p = (sink q)*"*(cosh t — cosh q)***g (cosh q) ,
fl@) = S“ cos (@t ()dt, |Re k| < —i- :
Then

1. F(@) = 0@, & ~ + oo, rl F@)|ds < o.
2a. R'(t) is continuous for ¢t = 0.
2b. K/(t) satisfies the conditions of a Fourier inversion theorem
[9, p. 18], &', " are both absolutely integrable over the infinite
’b.nte’}"'val oo ; t g O, limt__.+0,+°° h - 0, limt_,+°° h/’ = O-
oo t
3. S (S lp{dq)dt < oo,
1] 0
Proof of Lemma 1. Lets = cosht, r =coshq, r= (s — Lw + 1.
Then

D = (s — 1)"PE(s — Dw + 2)7*g((s — L)w + )e(w) ,
c(w) = (1 — w) @bk |

Hence there exists c¢,(w) independent of ¢ such that

1

n 1
9D | < gt ow)], ¢ ~ + o, glcn]dw < x>e>0m
)

ot»

:0,1,2,|Rek|<%.

Again by dominated convergence we conclude d"h/dt" = Y(B”p/at")dw,
o >t20,n=1,2 |Rek| < 1/4. Hence parts 2, 3 of Le;nma 1 hold.
We are now permitted to integrate by parts with respect to ¢ the
right-hand side of the defining formula for f(z) in the hypothesis
of Lemma 1 to conclude f(x) = 7' F(z), F(x) = rsin (xt)h"'(t)dt. Since
M(t)=0(e ), t~ + ,1/4 >e>0, we concholde the real and im-
aginary parts of A”(t) are of bounded variation in the infinite interval
o =t =0 (see I.P. Natanson “Theory of Functions of a Real Vari-
able”, p. 238, for definitions and theorem). This implies F(x) =
O(x™), x ~ + . This completes the proof of Lemma 1.

LEMMA 2. Let geG. Then
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tim ([ Faa)ar = i [ ([ a)aa = (] Fat)aa

7= psin(@t), © = 0, |Re k| <%.

(See Lemma 1 for the definition of p.)

Proof of Lemma 2. Since g ¢ G, the iterated integrals in Lemma
2 are equal for finite A. Part 3 of Lemma 1 implies absolute
integrability of the first iterated integral in Lemma 2. Hence we
satisfy Fubini’s theorem which implies Lemma 2.

LeEMMmA 3. Let
F(v) = g”(v — ) Mrhpds ¢ = (s — 1)Hg(s), g€ G

Then

_i ! _ —1j2—k — §t _ —1 z—k@_ l_
" Sl(t o) R ) = | (¢ — o) o, |Re k| < -

Proof of Lemma 3. Part 2 of Lemma 1 implies F(v), F'(v) are
both continuous for » > 1, lim,_,, Fi(v) = 0. Hence we satisfy a theorem
(relating to the Abel integral equation) [1, p. 5] (this theorem can
be modified to include singularities of the type (x — 1)%, v~ + 1,
Rea > — 1, our case, see [1, p. 6]), which implies the conclusion of
Lemma 3.

The rest of the proof of Theorem 1 consists mainly in applying
the above lemmas to show that all the operations we use to show
that (2) is a solution to (1) are valid.

Using the integral representation for Pf_,, from [5, p. 165], we
obtain from (2), the iterated integral,

(3)  Flo)= a(lc)xS:Gt p sin (xs)ds)dt
(see Lemma 1 for the definition of p)

a(k) = 2“%‘”7’(—% — Ic> sin ((—;— + k)n), =0, |Rek| < —i— .

(We note (8) is valid by Lemma 2.)

We now apply to the right-hand side of (3) the following opera-
tions in this order,

1. integration over a triangular domain (see Lemma 2),

2. integration by parts with respect to s,

3. the Fourier cosine transform.
Since operations 1, 2, 3 are now permissible by Lemmas 1, 2 (g€ G),
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we obtain from (8) the valid identity

rcos (tx) f(x)dz = al(k)% (see Lemma 1 for definition of %)
0

(4) a(k) = (zm—llzr(_;_ - k) sin ((% + la)n) ,
t>0 |Rek|< %.

Lemma 3 implies all the operations (those indicated in Lemma 3) to
show the right-hand side of (4) is a solution to an Abel integral
equation are now permissible [1, p. 9]. (Again we note only real %
are treated on p. 9, but the theory can be extended to complex £,
our case.) Hence applying these operations (those indicated in Lemma
3 to the right-hand side of (4), we obtain the valid identity

gl{cosh t) = St<rudx)ds, u = ak)(sinh t)*(coshh t — cosh s)™'/*~*
(5) 1 -t 1
cos (s2)f (@) , ask) = (2-'7) /<I‘(E — k)) ,t> 0, [Rek] < £ .
Interchanging the order of integration of the iterated integral on
the right-hand side of (5) (which is now permissible by part 1 of
Lemma 1), then using the integral representation for Pf,_,. from
[2, p. 156], we obtain the valid identity L(L«g)) =g,t> 0, |Re k| <
1/4. This completes the proof of Theorem 1.

COROLLARY 1. Let g, g.€ G such that Lyg,) = Lyg,), then g,(t) =
gLt), t >0, |[Re k| < 1/4.

Proof. Letwu =g, —¢g,. ThenweG. Hence Ly(u)= 0Dby linearity
of L,, Hence f(x) (of (3)) =0,2=0. We then obtain from (5) the
conclusion of Corollary 1.

THEOREM 2. Let F be the class of real wvalued functions such
that feF if and only +f

1. f(z) = 2*f (%), fi(x) s continuous for x = 0, and of bounded
variation on any closed and bounded interval contained in o > x = 0.

2. £, =0@"), 8~ + ,e>0.
Then L (L(f))=f,2=0, |Rek|<1/2.

Proof of Theorem 2.

LeMMA 4. Let feF, g = L(f), then
A
1. S {9(x)|dy exists for any A > 1.
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2. g = 0((cosh™ y) X (y* — 1)), y ~ + oo,
providing |Re k] < 1/2.

Proof of Lemma 4. From formula 26 [2, p. 129],
(@) PE_y.(cosht) = (2m sinh t)y (e f, + %7 f,),
1

fi= F(éf(_—l:'xi Z.x>f3’ fa= F(%Jrk, é—k, 1+da; — Eeft cosh t) ,

Fix) = fi—a), F(a, b, ¢; 2) = MS:wds, w = (1 — ) (L — 28)°

Re b, Re (¢ — b) > 0, |z2| < 1, M independent of z[2, p. 59].

(b) 22z + a)/T'(z + b)) ~a, + az™ + +-- (an asymptotic
series), [z| ~ + co uniformly for |argz| <7 — ¢, ©/2 > ¢ > 0 [2, p. 47],
so differentiation of the right-hand side of (b) is permissible [3, p.
21]. From (a) we conclude (1 + z)™'/*** fi(x), (L + ) ' fy () are
uniformly bounded for x = 0 and ¢ = 1, providing |Rek| <1/2. In
(1) we now use the integral representation from (a), then integrate
by parts with respect to x, which is permissible (f € F) to conclude
g9 (y) = (cosh™ y) " (y* — 1) re*—‘“”c”’(y, x, k)ds, vy = 2, |Re k| < 1/2,
further the real and imaginaroy parts ¢¥ are of bounded variation
in & on the infinite interval o« = x>0,y = 2, |Rek| < 1/2. Hence
the real and imaginary parts of ¢ can each be written as the
difference of two monotonically decreasing functions c¢{'(x), ¢ = 0,
lim, ., ¢?(x) = 0 uniformly in y = 2, ¢’ are uniformly bounded, x =
0,y=2 |Rek|<1/2,m=127=1 2 since f(x) = O(x™"7°), x ~ + oo.
Also g(y) = O((y — 1)7*), 2 >y > 1, |Re k| < 1/2, by (5) (in the proof
of Theorem 1), f e F. Hence Lemma 4 holds.

oo

LEMMA 5. The g of Lemma 4 implies S (gmlf] dt)dq < oo, &=
0, |Rek| < 1/2 (see Lemma 2 of Theorem 1 for the definition of f).

Proof. Using the change of variable (cosh ¢ — cosh ¢q) = (cosh ¢ +
1)w, we conclude S“] Fldt < M (sink q/2)7|(sinh ¢)*~*(cosh ¢)* g(cosh g) |,
¢>0,2=0, M a éonstant, [Re k] < 1/2. Hence the conclusion of
Lemma 5 follows.

The rest of the proof of Theorem 2 consists mainly in justifying
in reverse order all the formulas arising from the solution of the
integral equation L,(f) = ¢ in the proof of Theorem 1. Hence we
will point only where the rest of the proof of Theorem 2 must be
modified from that of Theorem 1.
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REMARK 1. The inversion theorem for the solution to the Abel
integral equation [1, p. 9] appealed to in the proof of Theorem 1 has
been modified to include functions which have singularities of the
type (# — 1)*, 2 ~ + 1, Rea > — 1. Hence this modified form of the
theorem applies again to our case (see (5) in the proof of Theorem
1) since we have a singularity of this type when we use the change
of variable s = cosk q.

REMARK 2. Lemma 5, f ¢ F imply the sum ﬁ(+ o) — ﬁ(+0), x =
0, |Re k] < 1/2, of the upper and lower limits (both are finite) (arising
when one does an integration by parts, i.e., the reverse operation
corresponding to the one of part 2 of (8) in the proof of Theorem
1) is zero.

REMARK 3. Lemma 5 implies the g of Lemma 4 satisfies the
conclusion of Lemma 2 of Theorem 1. Hence the reverse operation
of integrating over a triangular domain (see Lemma 2 of Theorem
1) is now permissible. Hence we conclude all the reverse formulas
are valid. This completes the proof of Theorem 2.

COROLLARY 2. Let f,, f,€ F such that L,(f,) = L,(f.). Then f(x)=
fix), =0, |[Re k| < 1/2.

Proof. Letr = f, — f,. Then re F. Hence by linearity L,(r) =
0. Then by (3) of Theorem 1 (see also Lemma 5 of Theorem 2) we
obtain the conclusion of Corollary 2.

We note in closing, using the change of variable (cosk t — cosh q) =
(cosh g + cos a)s, the integral representations for P _,, in Theorem
1 and [5], we obtain a pair of reciprocal transforms

1. g(cosh q) = sin a(coshk q + cos a)****(sinh q)7F, |a| < /2,

2. fx)=2"g(I'1/2 - k)'B(1/2 —k, Daxl'(1/2 — k+ tx)[(1/2 —
k — ix) sinh ax, |Re k| < 1/2. (The case k = 0 specializes to the example
in [4].) B = Beta function. Further, ge G of Theorem 1 and fe
F of Theorem 2.

If in Theorem 1, part 1, we now assume g, is analytic for y = 1,
Rek < 1/2, in 2 we assume # = 0 and arbitrary, then by the methods
in the proofs of Theorems 1 and 2 (we use the integral representation
for Pf_., from (5) in L,), we conclude ¢(k) = L,(Lyg)) is an analytic
function in £ for Rek < 1/2, y > 1. Hence by analytic continuation,
Theorem 1 and Corollary 1 are now valid for Rek < 1/2.
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