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The purpose of this note is to study a certain class of
stopping times for Bernoulli automorphisms by means of the
Friedman-Ornstein results concerning weakly Bernoulli parti-
tions.

1. Introduction. Let T be an automorphism of the non-atomic
Lebesgue space (X, %, ) and let 8: X — Z* be a measurable function.
If the transformation S = 7" defined by S(z) = T%“(z), for x€ X, is
an automorphism of X then @ is called a stopping time for 7. Such
a stopping time will be said to be of nth order (where % is a positive
integer or o) if there exists a decreasing sequence D, > D,>D,D---
of measurable subsets of X satisfying

(a) p(D,) >0 and p(D,.,) =0 if % is finite
or

(b) (D)) >0 for all ¢+ and (N7 D,) = 0 if = is infinite
such that 7 coincides (modulo 0) with the automorphism M defined by

M(.’E) = TDOO TDJ_O TD2° ce** 0 TDs——lo Tps(x) » fOX‘ xE .Ds - D8+l y

for s=0,1,2 ---,n — 1, where D, = X and Tp, denotes the auto-
morphism induced by T on D,.

Neveu has shown [3] that every stopping time # for which 7%
is ergodic is an nth order stopping time for a unique %. Moreover,
the sets D, D,, --- are also unique (modulo 0). It follows from the
work of Belinskaya [1] that if # is an nth order stopping time for
T then W T% = n w(T).

The purpose of this note is to study certain ergodic properties
of T’ under the hypothesis that T be a Bernoulli automorphism.
For definitions and notation of entropy theory the reader is referred
to [4] and [6]. For convenience of notation we shall let Pr =
VrT:P, P* = V5 TP, and P~ = Y°, TP where m > n and P is a
partition of X.

2. We now establish a result, using a technique developed in
[7], concerning a special class of stopping times for a Bernoulli
automorphism.

Let T be a Bernoulli automorphism of X, and let B be a Bernoulli
partition for T, i.e., B is a generator and the orbit of B under T,
{T*B:?¢ Z}, is a jointly independent sequence of partitions. We let
%, denote the collection of all measurable partitions P of X for
which H(P*|B*) + H(P~|B™) < oo.
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THEOREM. Let T be a Bernoulli automorphism of X and B be
o Bernoulli partition. Let 6 be an nth order stopping time for T
and let D, D, --- be the sets corresponding to 8. Let P denote the
partition {X — D, D, — D,.,:1=1,2, ---}. Suppose Pe F;. Then
S =T is weakly mixving if and only if S is a Bernoulli auto-
morphism having entropy n h(T).

To prove this theorem we will require the following lemma.

LEMMA 1. Let A, F and C be measurable partitions of X such
that F is independent of A and H(C|A) <e. Let D= C be finite.
Then

HD|F)=HD) —¢.
Proof. Choose F, < F such that F, | Fand H(F,) < . Then
H(F,|D) =z H(F,|A) — H(D|A) z H(F,) — <.
Hence
HWD|F,)= HD) —¢.
Letting n — « we obtain the desired result.
Proof of theorem. Let K be any positive integer, ¢ > 0, and
Q = B%, (this notation will be employed only with respect to the
automorphism 7). Choose N > 0 such that H(P’.|B~Y.) < ¢/4 and
H(Py|Bzy) < ¢/4. Let R = max {N, K}. If Sis weakly mixing then
there is an integer M > R for which
H(S™Q| B2:) = H(S™Q) — —.
Since
S~*@Q £ B%, vV P,
and
H(B.,V P°.|B2.) < —Z- ,
Lemma 1 implies that

H(S™Q V BZ;|Bz.) = H(S™Q V BZfz) — .ff

Using the fact that
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V SiQ < B\ Pr
we obtain:
H(s-MQ]? S"Q) >H(S Q| B=, \ PY)
> H(S"Q|B=,) — H(P; | B=y)

= H(S™Q|B=) — —

— H(S™™Q \ B%,|Bz,.) — H(B®:| B3,)) — i—

= H(S™™Q V BZR) — H(B?;) — .;_
= H(S™"Q| BZz) — %
= H(S™Q) —¢.

Since K and ¢ were arbitrary, there exists an integer » > N for
which

H(S“’(BER)

V S(B2)) 2 H(BL) — <.

Now, for all ¢ > p,

H(V 50|V 5Q) = H(Y S'Q| Br v PL.)
> H(v SQ 131,) — H(P°. | B~
= H(Y $Q|B=.) - -
— H(V $QI B, v BE) - £
— H(V §Q v B, | B-i) — H(BE,) - i
z H(Y S'Q v B ) — = — H(BZ)
> H<\Z §'Q) + H(BE,) — ¢ — H(BEy)

This verifies that Q is a weakly Bernoulli partition for S and thus,
applying the Friedman-Ornstein theorem [2], @ generates a Bernoulli
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factor. As a result of Ornstein’s theorem 2 of [5], letting K— oo,
we find that S is actually a Bernoulli automorphism.

3. We now illustrate some consequences of the theorem in the
case of second order stopping times.
We omit the proofs of the following two elementary lemmas.

LemMmA 2. If R is an automorphism of X and A is a measura-
ble subset of X for which Uy R*A = X then R is ergodic if and only
iof R, is ergodic.

LEMMA 3. Let R be an automorphism of X. If R is weakly
mixing then so is R.

ProposiTioN 1. Let T be an automorphism of X and let 6 be
a second order stopping time for T. Then S = T° is ergodic if
and only +f both T and (Tp) are ergodic.

Proof. If S= T° is ergodic it is well-known that S, = (T )
is also ergodic. Hence T, is ergodic. From UfF S°D, = X it follows
that Uy T°D, = X. Applying Lemma 2 we obtain the ergodicity of 7.

Conversely suppose T’ and (75p,)* are ergodic. In view of Lemma
2, it suffices to show Ui S'D, = X. One easily verifies that

s((’J T"Dl) UD,=U T°D,  (for n =0)
from which is obtained U7 S*D, = Uiy T°D, = X.

COROLLARY 1. Let T be a Bernouwlli automorphism of X, B be
a Bernoulli partition for T, and 6 be a second order stopping time
defined by choosing D, to be an atom of VZx TB for any integer K.
Then S = T 4is ergodic.

Proof. It follows from a corollary of Theorem 1 of [7] that T),
is Bernoulli and hence, of course, (75 )" is ergodic. Thus Proposition
1 yields that S is ergodic.

PROPOSITION 2. Let T be a Bernoulli automorphism of X and
B be a Bernoullt partition for T. Let 0 be a second order stopping
time for which {D, X — D} € F#5. Then the following are equivalent:

(@) Tp, is weakly mizing.

(b) Ty, is Bernoulli.

(c) Sp, is Bernoulli.

(d) Sp, is weakly miwing.
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Proof. Using Lemma 3 together with the observation that Sp, =
(Tp,) and Theorem 1 of [7] the proof is immediate.

ProPOSITION 3. Let T be a Bernoulli automorphism of X and
B={B, B -+, B} be a Bernoulli partition for T. Let 0 be the
second order stopping time for T defined by choosing D, = B'. Then
S = T? 13 mizing.

Proof. Let K be a fixed positive integer and set @ = B¥;. As
a consequence of the definition of S one can verify that

VSQ=<Br and VSQsB..

So if A and B are members of the algebra generated by the atoms
of @ then ((S‘AN B)— (A)#(B). Now a standard approximation
argument will show that S is mixing.

COROLLARY 2. Under the hypotheses of Proposition 3 the auto-
morphism S = T? is Bernoulli.

Proof. This follows immediately from our theorem.
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