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FAITHFUL STATES ON A C*-ALGEBRA
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Let A be a separable C*-algebra which is σ-weakly dense
in a von Neumann algebra ~-*C The equivalence of the follow-
ing two statements is proven: (i) ^ is atomic and A con-
tains all miminal projections; (ii) A normal state φ of ^ is
faithful if the restriction ψ\A of φ to A is also.

The results of this paper have grown out of conversations with
Haag, Herman, Hugenholtz, Kadison, Kastler, and Pedersen during
the Functional Analysis Special Year Program at UCLA in the spring,
1971. Seeing that any state on a C*-algebra satisfying the Kubo-
Martin-Schwinger condition for any one parameter automorphism
group of the algebra gives rise to a faithful normal state on the von
Neumann algebra generated by the cyclic representation induced by
the state, Hugenholtz raised the question as to when this phenome-
non occurs in general. Namely, the original question is as to whether
given a von Neumann algebra ^ ^ with a σ-weakly dense C*-subalgebra
A, a normal state φ on ^ is faithful if the restriction ψ\A of φ to
A is faithful. Kadison answered immediately in the negative with
the following example:

EXAMPLE 1. Let {rn} be an enumeration of all rational numbers
in [0, 1]. Consider the set

Then, denoting the Lebesque measure on [0, 1] by μ, we have

μ(E) ̂  Σ — = —
n=l 3 % + 1 3

Let A denote the C*-algebra C[0, 1] of all continuous functions on
[0, 1] considered as an operator algebra acting on L2[0, 1]. Then the
von Neumann algebra generated by A is given by L°°[0,1]. We define
a normal state ω of L°°(0, 1) by

Then, ω is not faithful since μ{E) ^ 2/3 < 1, while ω\A is faithful
because E is dense in [0, 1].

Therefore, a dense C*-subalgebra of a von Neumann algebra does
not characterize faithful normal states. However, if we consider the
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cyclic representation {πωf !gωf ζω} induced by a given faithful state ω
on a C*-algebra A, then the situation is more complicated. That is,
if A is abelian, then the von Neumann algebra πω(A)"f say ^*C, is
maximal abelian, so that the state ώ on ^ C given by ώ(x) = (xξω\ξω),
xe^ω, is faithful. In the above example, the situation is thatξ>ω =
L\E) and ^ ω = L~(E).

Pedersen then constructed the following counterexample.

EXAMPLE 2. Let A denote the C*-algebra of all 2 x 2 matrix-
valued continuous functions on [0, 1]. Let {rn} be an enumeration of
the rational numbers in [0, 1] and r0 be an irrational number in [0, 1].
We define a state ω on A by

β>(α>) = Σ -^(χn(rn) + αjtt(rn)) + -^ n (r 0 ) .

Then ξ>ω is identified with the direct sum of C2 and the Hubert space
of all 2 x 2 matrix-valued functions on {rn} equipped with the inner
product:

The von Neumann algebra ^£ω generated by πω(A) is identified with
the algebra of all bounded 2 x 2 matrices-valued functions on {rn} (j
{r0}, where the action of ^£Ό> on ^ ω is given by

2

(αfhi(rn) = Σ «i,fc(rw)fΛfi(rΛ)
λ l

for every xe^fω and f e £ ω . The cyclic vector ίω is given by

(ξ*)i.i(r*) = SitJ , (ξ.Wo) = 1 > (f.).(n) = 0 .

Let e denote the projection defined by

e(rn) = 0 , n = 1, 2, , eu(r0) = β12(r0) = e21(r0) = 0 ,

β 2 2 ( r 0 ) = 1 .

Then we have (eξω\ξω) — 0. Hence ω does not give rise to a faithful
normal state on ^ C .

From these examples, we see, in the first place, a remarkable
feature of the iOίS-condition which guarantees the faithfulness of
the extended normal state on the generated von Neumann algebra;
secondly, it is in general not easy to get any information on the
faithfulness of a state extended from a given C*-algebra. However,
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we have the following nice example in the noncommutative situation.

EXAMPLE 3. Suppose A is the C*-algebra ^f^(ίg) of all com-
pact oserators on a Hubert space φ. Then the weak closure ^€ of
A is the von Neumann algebra -£f (φ) of all bounded operators on φ,
and a normal state φ of Λ€ is faithful if and only if its restriction φ\A

to A is faithful.
Thus, there does exist a C*-algebra on a Hubert space on whose

weak closure a normal state is faithful if its restriction to the C*-
algebra is faithful. More generally, the following theorem shows the
structure of such a C*-algebra. To avoid a trivial situation, we
assume that the C*-algebra in question is always separable. The reason
for this assumption is, for example, that if the C*-algebra in question
happens to be a von Neumann algebra (a von Neumann algebra is a
perfectly good C*-algebra), then there is nothing to argue.

THEOREM 1. Let A be a separable C*-algebra acting on a Hilbert
space § and ^ the weak closure of A. Then the following two
statements are equivalent:

(i) ^£ is an atomic von Neumann algebra and A contains all
minimal projections of ^/£\

(ii) A normal state φ on ^ is faithful if the restriction φ
of φ to A is also1.

Proof, (i) => (ii): Suppose a normal state ψ on Λ is not faithful.
Let e be the support projection of φ. Then e Φ 1 by assumption.
Hence 1 — e majorizes a nonzero minimal projection p in ^€. The
assumption in (i) says that p is in A. Since <p(p) = 0, <P\A is not faithful.

(ii) => (i): Suppose A enjoys the property described in (ii). Since
A is separable, there is a normal state ψ of ^ which is faithful on
A. By assumption, φ is then faithful on ^ . If p is a nonzero
projection in ^t, then the normal positive functional co on ^, given
by ω(x) = φ((l - p)χ(l - p)\ x e ^f, is not faithful on ^£. Hence ω
is not faithful on A either by assumption, so that there exists a non-
zero positive element he A with ω(h) = 0; hence (1 — p)h(l — p) = 0.
Choosing \\h\\ ^ 1, we have 0 ^ h ^ p. Thus we conclude here that
any nonzero projection p in ^£ majorizes a nonzero positive element
in A.

Now we denote by Ά the universal enveloping von Neumann

1 After the first draft of this article was distributed to specialists, the author was
informed of alternate proofs of the implication (ii) => (i) independently by C. Akemann,
G. Elliott, and G. K. Pedersen which were shorter than the original one. The proof
presented here is due to Pedersen. The author would like to express his thanks here to
Professor C. Akemann, Professor G. Elliott, and Professor G. K. Pedersen.
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algebra of A and by z the supremum of all minimal projections in A
which is a central projection in Ά. Since A is separable, there exists
a countable set {ω5} of pure states which is weak* dense in the set
of all pure states. Let ω = Σ~=1 V(%)ωi- Let ώ denote a Hahn-
Banach extension of ω to ^£ and decompose ώ in its normal part
and singular part: ώ = ώn + ώs. Then ώn is faithful on ̂  Otherwise,
&ΛP) = 0 for some nonzero projection p in ^ Since ώ8 is singular,
there exists a nonzero projection q ^ p in ^ with ώβ(g) = 0. From
the first part of the proof, it follows that there exists a nonzero h
in A with 0 ^ h ^ g. But then we have

0 ^ ω(h) =

^ ω.fa) + ωβ(q) = 0 ,

a contradiction. Therefore, ώn is faithful. We consider ω as a normal
state of A. Let π denote the normal homomorphism of A onto ^
induced by the injection of A into ^*C Let ψ — *π(&n). Then ψ is a
normal positive functional on A such that

so that we have ψ <* ω. Hence the support e of ψ in A is majorized
by the support of ω in A; hence β S z because ω is the convex sum
of pure states. Hence Άe is atomic. For any xeΆ, π(x) = 0 if and
only if 0 = <SΛ(π(α0*π(a0) = ώΛ(π(α;*ίE)); if and only if ψ(x*x) — 0 if
and only if xe = 0. Therefore, we have TΓ-^O) = Ά(l — e). Hence
π is an ismorphism of Άe onto ^ ^ so that ^£ is atomic. The minimal
projections in ^ belong to A by the first part of the proof.

Therefore, we conclude that the possibility of characterizing the
faithfulness of a normal state on a von Neumann algebra by means
of the faithfulness of the restricted state of a given dense C*-sub-
algebra is very limited, actually it is possible only for a von Neumann
algebra of type I and a very nice C*-subalgebra.

PROPOSITION 2. For a separable C*-algebra A the following two
statements are equivalent:

(i) A is post-liminal;
(ii) If the left kernel of a factor state φ on A is a two sided

ideal, then the corresponding cyclic vector ξφ is separating for πφ(A)",
where {πφ, §ψf ξφ) is the cyclic representation of A induced by φ.

Proof, (ii) =» (i): Let ω be a pure state on A, and {πω, £ω, ξω}
be the irreducible cyclic representation of A corresponding to ω.
Then $ω is separable and τrω(A)" = JΪ?{!Qω), the von Neumann algebra
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of all bounded operators on !gω. For any normal state ψ on J*f(ίgω),
φ = *7rω(̂ ) gives rise to a cyclic representation {πφ, <gφf ξφ} which is
quasi-equivalent to πω. Hence φ is a factor state on A. Let p denote
the normal isomorphism of ^f{ίgω) onto πφ(A)" such that πψ — p-πω.
Suppose the restriction of φ to πω(A) is faithful. Then the left kernel
mφ of φ is the same as the kernel ifz\ϋ) of ττω, so that mφ is a two
sided ideal. Hence by assumption, the cyclic vector ξφ is separating
for πψ(A)". But we have, for any xeA,

ψ - πω(x) = φ(x) = (πφ(x)ξφ \ ξφ) = (<o - πω(x)ξφ

Hence we get

Therefore, ^ is faithful on £f(ίgω). Thus the C*-subalgebra πω(A) has
the property in Theorem 1. Hence πω(A) contains the C*-algebra
^f^iQω) of all compact operators on φω, which means that A is
post-liminal.

(i) => (ii): Suppose A is post-liminal. Then every factor represen-
tation is quasi-equivalent to an irreducible representation, and the
image of A under each irreducible representation contains the C*-
algebra of all compact operators on the representation space. There-
fore, if a normal state on the weak closure π(A)" of the image of A
under any factor representation π is faithful on π(A), then it is
faithful on π(A)". Thus, statement (ii) follows.

Returning to the original question how to guarantee the faithful-
ness of the extended normal states on the weak closure, we introduce
the following:

DEFINITION. A state ω on a C*-algebra A is said to satisfy the
quasi K%ώo-Martin-Schwinger condition if lim^^ ω(xnxt) = 0 for every
sequence {xn} in A with the property that lim^^^ ω(xlxn) = 0 and
\imn,m^ω{{xn - xm){xn - xM)*) = 0.

Making use of Tomita's theory of left Hubert algebras, one can
prove the following, though the presentation of the full proof is beyond
the scope of this paper, see [5] and [6].

THEOREM 3. If a state φ on a C*-algebra A satisfies the quasi
KMS-condition, then

(i) the canonically induced normal state φ on the von Neumann
algebra τcφ{A)rr generated by πφ(A) is faithful;

(ii) there exists a one parameter automorphism group σt of πφ(A)"
for which φ satisfies the KMS-condition.
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