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Suppose ¥, and X, are complex Banach spaces with u,, -- -,
%, in LX), ve L (X,), and suppose & is a uniform crossnorm.
The spectra of the operators X7, u; Qv on ¥; X X, and B: 2 —
Do ugmv?, e £ (X,, X,), are studied in the context of a general
theory. Explicit representations are set down for the resolv-
ents of these and more general operators.

0. Introduction. A classical result of Stephanos [9, p. 83] can
be phrased as follows:

Suppose w and v are complex » X n matrices and p, ---, p, are
complex polynomials. Let & denote tensor product, and o spectrum.
Then

1) o(Zp@ev) = Ul nmwe):zeow).

In 1966 Datuasvili [3] gave the following generalization of Ste-
phanos’ result. Let #, -+, %, and v be complex 7 X » matrices.
Then

(2) o‘(jz,:uj@v") =y {a(éujzf): zeo(v)} .

Stephanos’ theorem can be interpreted as a result on linear operator
equations. It implies that the operator T on % x » matrices defined
by Tz = >, p;(u)zsv’ has

(3) o(T) = U {a@ pj(u)zj>: ze o(v)} .

Similarly Datuasvili’s result yields that the operator R defined by
Rx = 37, u;av’ has

(4) o(R) = U {a(z’:‘a ujzf>: ze a(v)} .

Lumer and Rosenblum [8] proved that (3) holds if u, ve (%),
where %X is a complex Banach space and 7T is considered as an operator
on ZF(¥) to ¥ (X). R. E. Harte [6] has recently shown that (4)
holds if u, -+, u, and v are in Z(9), where $ is a complex Hilbert
space.

Brown and Pearcy [1] proved that o(u ® ») = o(u)o(v) in case
u, ve F(9H) and u @ v acts on the Hilbert space § ® . This was

9%
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generalized by Schechter [12] and Dash and Schechter [2]. It was
further generalized by Harte in [6].

In this paper we shall set down explicit representations for the
resolvent of each of

(1) Xou; ® v,
where wu, -+, u,€ (%), ve (%), and & is any uniform crossnorm,
and

(ii) R:a— 37 uav’, xe (X, %),
where u,, +--, u, € < (%) and ve & (¥X,). For a survey of explicit
solutions of linear matrix equations, see [7].

The theory for the representations is presented in §1. In §2
we prove a spectral mapping theorem that subsumes conclusions such
as those of (2) and (4) in one unified theory. In §3 we give some
applications.

The notation and terminology used in the paper are as follows.
9 will denote a complex Banach algebra with identity 1 or I. If
ac?, o(a|N) is the spectrum of a; that is, o(a|A) is the set of com-
plex numbers z for which z — @ is singular in 2. In case there is
no ambiguity involved we shall use the simpler notation o(a) for the
spectrum of a.

If X and Y are Banach spaces, (%, 9)) is the space of all con-
tinuous linear transformations from % into 9, and (%) = L (¥, X).
If 2 is an index set we sometimes use U {a;: M€ 2} to mean Uico @

1. Integral representation of inverses. Throughout this section
{u;}7-, and {v;}™, are subsets of ¥ that satisfy the following commu-

tativity relations: v;v, = v,v; and v;u, = ww; for j, k=1, -+, m and
1 =0, .-+, n. It should be noted that we do not require the w; to
pairwise commute. p,, -+, p, shall be polynomials in m variables.

LemmA 1.1. If
o(v) X +++ X 0(v,) & {(zl, cee, Bt En‘, UiDi(2y ***, Bn) 18 inthible} R
7=0

then >0 w;pi(vy, ++ -, V) 18 invertible and its inverse is

1 m n m
(5) (o)1 ] (Buwmiten o 20 [ — 00742, -+ daa
21 cy Cp \5=0 k=1
where C, is the boundary of a Cauchy domain D, (see Taylor [13])
that contains o(v,) for k=1, ---, m and such that X7, u;pi(z, **,
Zn) 18 invertible for (z, +++, 2,) in D, X -+ X D,.

Proof. The proof is by induction on m.
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Assume m = 1. We shall show by direct computation that

(DZ; w%(%)) = EEI— go (; ujp,(zl)) l(zl — v)dz, .
6) <k};0 ukpk(v1)> 2}(@. Sq(g 1/6,-17,-(z1)>_1(,z1 — v)'dz
- 2—711':L~ Scl<kzi‘ uk[pk(vl)_ﬁQk(%H)(g %jpj(zl)>_1(z1 — ) dz,
* —2—7; S(,’l(Z uk?;,(%))(é ufpi(zl)>—1(z1 — v,)7'dz, .

Since v, — 2z, and >, u;p;(2,) commute, the penultimate term has
an analytic integrand, and thus equals the zero element. The last
term reduces to
1 S (. —v)'de,=1.
oni o)
Thus the right term of (6) is a right inverse of >, u;p;(v,). A
similar computation shows that it is also a left inverse, which com-
pletes the proof for the case m = 1.
Assume that the lemma is true when m = k, and that o(v,) x
* X 0(Ver) S {2y, 00, zk—_%—l): S0 ui0i(2y, * ¢, 24s) is invertible}.
Then for each z,.,¢ D,., the induction hypothesis yields

7 -1
(Zo u’jpi(/vly cety Vg zk+1)>
i=

( 7 ) 1 k n -1 n
= (——> S S (Z UiPi (2, <+, zkﬂ)) I (2 — vi)7'dz, + - - dz,

27y Cy Cp \5=0 k=1
However, (37— u;p;(v,, -+, vy, 2))7" is analytic for z in a neighborhood

of o(v,.). Thus, if we multiply (7) by 1/27i(z;., — v,4.) 7", integrate
about C,.,, and apply (6), we deduce that the lemma is true for
m=1Fk+ 1.

We cite one special case of Lemma 1.1.

COROLLARY 1.2. Suppose {u,}1-, is a subset of the Banach algebra
N and v in A commutes with {u;}i—.. If

o(v) & {zﬁ u;z’ s inveqﬂtible} ,
=0
then 3i_o u;v’ is invertible and
n i 1 _ 1 ; B .
<§6 u,v) 5t gx}z U2 ) (z v)"dz ,

where C 1s the boundary of a Cauchy domain D that contains o(v)
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and such that 37—, u;z% is invertible for each z in D.

Lemma 1.1 enables us to infer the following general result about
spectral inclusion as well as to write an explicit representation for
the inverse of 37, u;p;(v, *--, v») — M for certain complex numbers \.

THEOREM 1.3.

(8) 0(i ;D (vy, e, vm)> <4,
J=0
where

def

4=U Jlo<§ u;P; (2, + e, zm)): zreo(v), bk=1,.--, m} .

If e d, then
(% UiDi(Vy, **, Vm) — N>—

X ;ﬁl(zk —v,)dz, - d7y

where C, is the boundary of a Cauchy domain D, that contains
o) for k=1, ---, m and such that >.j- Wi P2y + vy Bm)—N 1S i~
vertible for (z, *++, 2, )€ D, X +++ X D,.

Proof. If n¢ 4, then it is immediate that o(v) X -+ X 6(v,) &
{(Zyy *<°, Zm) D0 u;Di(2y, -+ *, 2w)— M\ I8 invertible}. Define %,,, = —x
and p,., = 1. Lemma 1.1 is now applicable to 372 u;pi(v, -, Va).
Thus the theorem follows from that lemma.

Simple finite dimensional examples show that the spectral con-
tainment conclusion of (8) need not hold, if the v; do not commute
with {u,}. Consider

10 01 00
Uy = OO’%: Oo,andvlz 10}
In this case o(u, + wv,) = {0, 2}, but U {o(u, + u.2): 2€ a(v,)} = {0, 1}.
Even when the required commutativity relations hold one cannot
in general hope for equality in (8). For example, consider commuting
elements »# and v of a Banach algebra, set v, = v, = v. Then g(uv, —
uvy) = {0}, but U {o(uz, — uz,): 2, 2,€ 0(v)} is in general not {0}.

2. A spectral mapping theorem. In §1 we showed that under
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certain commutativity conditions (8) holds, but that in general
equality does not hold. In this section we find conditions sufficient
to imply equality in (8). For a different attack, see Harte [5], [6].

DEFINITION 2.1. Let 2 be a complex Banach algebra with closed
subalgebras 20, 2, -+, U.(m = 1) such that the identity 1 in U is
also in 9;, 5 =0, ---, m. Then %, ---, U, are independent algebras
in % if the following conditions hold for j, k=0, ---, m:

(i) If aed,;, be, j+ k, then ab = ba;

(ii) There exists a real number M such that whenever
a_.,'eglj, _7 = O, cee, M, then

M llell = Mo, - anll
(iii) If a; e, then o(a;|A;) = o(a; |AN).

LEMMA 2.2. Let U, --+, A, be independent algebras in LA with
{ui}ie & Uy and v, €N, for k=1, -+, m. Let each of p;, =0, ---,
% be a polynomial in m variables. If

0elU {0<§ujpj(z1, cee, zm)>: Zeeo(v), k=1, -+ m} )

then there exist N,eo(v,), k=1, -, m such that 3"y u;p;(My =+ *y M)
18 singular in A and either

(i) v, — N, 18 the limit of invertible elements of A, for k=1,
see,m, or

(1) Do w;oi(Nyy c o0, Ny) 18 the limit of imvertible elements of U.

Proof. Select a point ({, ---, £,) in o(v) X --- X a(v,) for which
o uipi(Ly, ¢+, C) 1s singular. The select components W, of o(v,)
containing ¢, for k=1, --«, m, and set W =W, x -.- xW,. Clearly
W is a connected set in complex m-space. Let K be the set of all
points (z, - -, 2,) in W for which 37, u;p;(z, -, 2,) is invertible in
A, Note that K is open in W and K= W. Thus since W is con-
nected, either K is empty or there exists a point (A, -+, \,) in

K- K.

Case (a). If K is empty, then 3%, u;p;(z, - - -, 2,) is singular for
all (z, +++, 2,) in W. In particular it is singular for (z, ---, 2,) chosen
so that z, is in the boundary of o(v,) = a(v,|W.), k=1, ---, m. Thus,

(i) follows. See Rickart ([10], p. 22).

Case (b). Assume (A, --+, \,)€ K — K. This means that
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_Zéujpj(?w, cery Nm)
=

is singular, but is the limit of invertible elements of 2[,. Thus (i)
holds.

We shall use the following terminology in the rems:inder of this
section. An element u of ; is an U; generalized divisor of zero if
there exists a sequence {x;} of unit vectors in %; such that lim;_, ux; =
0 or lim; ..z =0. In the first case we say that {z;} right zero
divides w and in the second {x;} left zero divides u.

THEOREM 2.3. Assume that U, A, ++-, A are independent
algebras in A and that each singular element of W; s an Aj;
generalized divisor of zero. If {u}i-e &S o v,eW, k=1, -+, m,
and each of p,, *--, P, 1S a polynomial, then

U(Z Ui Pi(vy, -0, v,,,))
(10) ]:O

= U{o(Sum - )iz o), =1, - m}

Proof. Theorem 1.3 gives the containment < in (10). To prove
the reverse containment it is sufficient to assume that 0eco(v,), k =
1, -, m, p;0, --+,0) =0 if 7 =1, and 0€ g(u,), and deduce that B =
Soupi(v,, +-+, v,) is not invertible. By hypothesis we know that
there exist left or right zero-dividing sequences {y\"} & 2, of u, and
{y*} = A, of v, k=1 ---,m. By Lemma 2.2 and the nature of
limits of invertible operators (Rickart [10], p. 22) we may assume
that either y{” left divides w, or {y{*} right divides v, fork =1, ---,
m. Thus the following two cases exhaust all the possibilities.

Case (a). {y?} left divides u,, {y}"} left divides v, fork =1, ---,
r, and ¥\ right divides v, for k=r + 1, - -+, m.

Assume that R is invertible and set g; = Ry -+ y7. Then
if k=r+1 -+, m Rv,9;) = v.Rg; = v,y «-- yi™ —0 as j— oo.
Thus since R is invertible lim;__ v,9; = 0 for k =» + 1, ---, m. Then

y;.(’) e y§.”") = y}o) cee y;")jo

(0)

=y Y e+ 2 uiPi(vy -, vm):lgj—w as j — oo .

However, by condition (ii) of Definition 2.1,
1= ILIO”'!J;“H < M|y -+ g™,

which is a contradiction, so B cannot be invertible.
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For the remaining case u, does not have a left zero dividing
sequence.

Case (b). {y{*} right divides v, for k =1
divides u,.
In this case

, +++, m and {y"} right

n
Ry -+ yi™) = uyy” - ™+ X w00y, o, vy e U
=

—0as j—> o,

This shows that R is not invertible since, as shown in the proof of
case (a), y” -+ y{™ is bounded away from 0.

We note that the “uniform crossnorm” condition (ii) of Definition 2.1
cannot be omitted in the hypotheses of Theorem 2.3. For, consider
a Hilbert space §, and let § = , P H,.. Let U, and H, be defined by

A 0
Ay, = ): Ae F(9), « complex} ,
0 al

A, = {(51 ]2) Be (D), B complex} ,

and let ¥ = <~(9). Clearly 9, 9., and U, satisfy all of the conditions

of Definition 2.1 except possibly (ii). If we let u, = <64 8> and v, =
(8 Jg) A, Be 2 ($), then o(uw) = (0}, but U {o(ue): z€ o)} =
0(A)-c(B) U{0}. Thus in general o(u.w,) #= o(u,)o(v,), and for this
simple example the conclusion of Theorem 2.3 does not hold.

3. Applications. Our first two applications of Theorems 1.3
and 2.3 generalize results of Rosenblum [11, Theorem 3.1] and Lumer
and Rosenblum [8, Theorem 10].

THEOREM 3.1. Suppose that {u;}i—, & U and suppose {vi}i-, is a
commutative subset of A. Let each of p;;j =0, -+, n, be a polyno-
mial in m variables. Define B: U — A by Bx = >0 u;xp;(vVy, ***, V).
Then o(R) & 4, where

def

4= {a(i‘, w;pi(zy, * e, zm)>: zeo(w,), k=1, -, /n} s
=0

and tf ned, ze A,

m
X (2, — v)'dz, +++ d2y
k=1
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where the C, are chosen as in Theorem 1.3.

Proof. Let B = _£(2),
B, = {u:ueW and u': o — ux, xc W

B, = {wrveW and vE:ix— v, xc U} .

By hypothesis B, is commutative, and clearly each element of B,
commutes with each element of B,. Thus we may apply Theorem
1.3 to X ulpi(vf, «--, vE). Since o(R) = (7o uipi(vF, + -+, vE))
and o(v,) = o(v¥), we have the desired conclusions.

A result analogous to that in Theorem 8.1 can be obtained if
one fixes complex Banach spaces %, and %, and defines B on (%, %)
by Rx = >\, uap;(v,, «++, v,), Where {u;}r, is a subset of .~ (%,) and
{vii, is a commutative subset of .<©(%). Indeed, if we consider
the case where m = 1 we get a stronger result.

THEOREM 3.2. Let X, and %, be complex Banach spaces, {t}l-, =
LX) and ve L(X). Define R: ¥ (%, ) — <L (%, %) by

Ry = ; wv .
Then
(11) o(R) = U {a(g u,-z">: ze o(v)} ,
and if n¢o(R),

n X -1
;R — x> x(z — v)"dz,
i=o

(12) (R — ) = —_ L(

2m1

where C is the boundary of a Cauchy domain _D that contains a(v)
and such that 3%, u;2’ is invertible for z in D.
Proof. Let U = L(F (X, %)),
A, = {wrue F (&) and u”: 2 — ue, x€ L&, %)},
and
A = pFrve LX) and vE: o — v, xe F(X, X))} .

It is easily checked that conditions (i) and (iii) of Definition 2.1 are
satisfied by 2, %, and 2,. The following argument will show that
the “uniform crossnorm” condition (ii) is also satisfied and thus by
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Theorem 2.3
o(R) = 0(% u,@(vh’)f) - U {"(Z% wizl): ze a(vR)} .

This is the desired conclusion since o(v*) = g(v) and (31— ujz’) =
O(Z;'Lo u’jzj)-

Choose unit vectors {a,} in X, and {8,} in %} so that ||ua,||—
||| and [[v*B,||—[|v]]. Then, upon setting x, = {-, B.ya,, we have

llw"v®|| = sup {||uav|: ve L (&, %), l|2]] =1
= lim sup |jux,v||

= lim sup (|| v*Bal [lua.ll) = llwll [[2]] -

Consequently we have ||u*v®|| = ||«*|| || v*||, which proves that Theorem
2.3 is applicable.

(11) was proved by Harte ([6], Theorem 3.5) under the assump-
tion that ¥, = X, is a Hilbert space.

Next we give an application of Theorem 2.3 similar to the one
above to obtain a generalization of a result of Brown and Pearcy [1].

THEOREM 3.3. Let § be a complex Hilbert space and let ¢, be
the class of compact operators w in F(9) for which

lull, = [tr(wa) ] < oo if 1<p< o

and ||u]l. = ||u]]. Fix ug «--, U, v in ZL(9) and define R: F(¢,) —
Fley)y 1S p= oo by R = S0 uav’. Then (11) holds and if ¢ o(R),
so does (12).

Indication of proof. Let A = F(c,) and proceed as in the proof
of Theorem 3.2.

The remaining applications deal with tensor products. The authors
were led to the formulation of Definition 2.1 and Theorem 2.3 through
efforts to unify these results and the preceding applications. In the
next theorem (13) can be deduced from Harte ([6], Theorem 2.3),
and (14) is new.

THEOREM 3.4. Let X, X, -+, X,, be complex Banach spaces and
let X be the completion of ¥, QX X -+ X X, with respect to some
uniform crossnworm. Let {u;}i-, & L (%), vi€ LX), k=1, ---, mand
let each of D, ++ -, P, be a polynomial in m variables.

Define



104 M. R. EMBRY AND M. ROSENBLUM

m terms
M;-O):%j®I®"‘®I,j:0, P (4
VW =1Rv,Q---RI

VM =1 RXIR v, .
Then

(S urpe®, -, v = (®)

@ =Ul(Sun, )| S @ ) me o] FE)

E=1, - m} )
Moreover, if Mg a(S t— uip;(v™, «+ -, v'™)| (X)), then
n -1
(S i, 070 )
i=o

L

21y
R~ 1) R QO Rn— V) A2 A2

where C,, ---, C, 18 in Theorem 1.3.

Proof. Let 9 = 27(%) and

U=u@RIY - Q:ue LX)}
A, = {I®01®...®I:’Ule$(%1)}

2.’1,”:{I®---®I®@m:vme£/(&m)}.

Each of U, ---, U, is a closed subalgebra of 9 containing the identity
IR ---®I. Since the crossnorm is uniform,

fao + o+ anll = llaoll -+ - llanll for a;€U;, 5 =0, -+, m

and thus it is easily seen that %, ---, 9, are independent algebras
in 9. Each singular element of ; is an 9l; generalized zero divisor
(Rickart [10], p. 279). Then by Theorem 2.3

oS mw®, -, v 2 @)
=0

= U{o(Surpie - 2

j=

g(aa)): 2,€ o(v?| 2 X)),

k:1,...,m},
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The result now follows since o(v* | (X)) = (v, | L E)), k=1, -+,
m and a(u”|N) = o(u|N,) for any u® in U of the form

W= u QIR - QI ue L&) .

As in the proofs of the preceding applications the representation
formula (14) is a consequence of Theorem 1.3.

If in Theorem 3.4 we choose #, = v,€ < (%,) and u; = 0 for j =
1, ---, m, we obtain Schechter’s result [12, Theorem 2.1]:

o(p(v®, v®, « -+, v™)) = U{o®(v, 2, -+, 2)| L(%0)):
z€0(v;| L (%), 5 =1, -+, m} = p(a(vy), 6(v), -+, 0(vn))

for any polynomial p of m + 1 variables. More specifically we have
the following result.

COROLLARY 3.5. Let X, ---, X, satisfy the hypotheses of Theorem
3.4 and let v;e (%), i =1, -+, m. Then

o0, @ -+ @ va) = [ o(vi] () ,
and if veo(v, Q -+ R v,), then

0, @ vy — N = (_L)msol ... Som(zl )

271

D@ =) Q@ Q (2 — V)R A2
where C,, ++-, C, s as in Theorem 1.3.

Proof. Let X, be a one dimensional Hilbert space and set u; =
0,7 =1, =1 2y7, **, 2n) = % *+* 2, in Theorem 3.4.

Next we consider a complex Hilbert space € and let HXU™) be
the Hardy space of &2(€)-valued functions holomorphic in U™ = U x
- x U (m factors), where U is the unit disk in the complex plane.

COROLLARY 3.6. Let n be a nonnegative integer, and assume
{6000, 0=y 200y G < 0} & L(€), where all but a finite numbers
of the c¢;,....;,, are equal to 0. Define T: H(U™)— H{U™) by

m

T: f(zy ooy 2n) = 3 €2l oo 202 o, 20) -
=5

J1» m

Then

o(T) = %a(‘ S g 2 2| PO | S L, k=1, e, m} :

..... im
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Proof. H{U™) is the completion of € Q@ H(U)Q --- Q HY(U)
under the Hilbert tensor product norm. If S is the unilateral shift
on H*U) defined by (Sf)(z) = 2f(z), then one can view T as

T= Z le,...,jmsjl ® oo ® Sim

The corollary now follows by applying (13) of Theorem-3.4 and noting
that o(S) = {z: |2] = 1}.

Theorem 3.4 also leads to the following result:

COROLLARY 3.7. Let € be a complex Hilbert space, {u;}i—, =
Z(C) and define V on 372,%C by

)

V: {Cj};;o — {kZZO ukck+i} ’

)
Up Uy oo u, 0 O
0 %, U, --- Uy,
V= 0 0 wuy w -<-- U,

Then o(v) = U {o(Xj-us2'): 2] = 1}

Proof. 352,%C is isomorphic to the Hilbert space € Q H¥U)
under the isomorphism that sends {c;}3, into 3\, ¢; ® 2/. If Sis the
unilateral shift on H*U), Sf(z) = zf(z) then V is mapped into

iu5®s*j.

Thus the corollary follows from Theorem 3.4. (14) can be used to
set down a formula of (v — \)™' if A ¢ o(v).
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