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STRONGLY BOUNDED OPERATORS

PaurL W. LEWIS

Recently Dobrakov, Batt and Berg, and Brooks and Lewis
have studied the class of strongly bounded operators on
continuous function spaces in detail. In many cases, these
operators coincide with the weakly compact operators and
therefore form a norm-closed two-sided ideal; and it is known
in general that the strongly bounded operators form a norm-
closed left ideal. In this note an example is presented which
shows that the strongly bounded operators do not form a
right ideal.

Let each of E and F denote a B-space, let H denote a locally
compact Hausdorff space, and let B = Cy(H, E) be the B-space (under
sup norm) of all continuous E-valued functions defined on H which
vanish at infinity. It is known that if an operator (=continuous
linear transformation) L maps B into F and Y = Y(H) is the Borel
o-algebra of subsets of H, then there is a unique weakly regular
finitely additive representing measure m:X — B(E, F'**) so that

L(f) = §fdm, fe B, e.g., see Batt and Berg [1] and Brooks and Lewis

[3] for further details.

The representing measure m: 3 — B(E, F**) is said to be strongly
bounded (s-bounded) provided that if (4,) is a disjoint sequence, then
M(A,) — 0, where # denotes the semivariation of m; an operator
will be called s-bounded if its representing measure is s-bounded.
Equivalent formulations are given in the following lemma, which we
state for reference purposes. For the details of the proof, one may
consult Brooks and Lewis [3].

LemMA 1. Suppose that m is o representing measure, m <« L.
Then the following are equivalent:

(a) m is s-bounded;

(b) (A, — 0 whenever A, \, T}

(¢) {Im,|: z€ F}} is conditionally weakly compact in ca(Z, E*);

(d) Zm(4)x, converges (in F) for each disjoint sequence (4)
and {(x) C E, (=closed unit ball of E);

(&) If (A)c X and A, \, @, then there is a nested sequence U,
of open sets so that A, U, and L(f,)— 0 uniformly for each sequence
(f) so that support (f,) U, [|full = 1.

The class of s-bounded operators which we denote by S has been
studied in [1], [2], [3], and [5], with the sharpest results being
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presented in §4 of [3]. In particular, if £ is reflexive, then L € S if and
only if L is weakly compact. Dobrakov proved in [5] that if F = B,
then § is a norm-closed left ideal. Part (e) of Lemma 1 also provides
a simple proof of this fact. However, the question of whether
S is a two-sided ideal is apparently open; the following example
answers this question in the negative and thereby settles a problem
raised in {3} and [5]. Consequently, while S coincides with the weakly
compact operators in many cases, in general it differs not only in terms
of mapping properties but also in terms of algebraic structure.

ExAMPLE. For each positive integer u, let E** denote Euclidean
2n + 1 dimensional space equipped with the {-norm, and let E be the
substitution or product space P,c<(£*"*'") [4, p. 31]. Let e, ;, be that
point in £ with 1 in the j,-component of the ¢th coordinate and 0
otherwise. For » a positive integer, set A, = (1/(» + 1), 1/n) and
partition A4, into 2n + 1 disjoint subintervals of equal length. Denote
these sets by a,,,, 1 <1, =2n+1. Equip I"={a,,;:1=21,1=j, =21+ 1}
with the discrete topology, and let H denote the one-point compacti-
fication of this set, with the point at infinity denoted by a,, Let
v denote Lebesgue measure, where we put v(a,,) = 0; and if A< Y(H),
then define M4) = v(a,,;), a, ;& A. Notice that if x€ £ and we put
x(t) = x for each te H, then E is isometrically isomorphic to a sub-
space of C(H, E). Now define L: C(H, E)— E G C(H, E) by setting
L(f) = Sfd)»; then L is an operator, L(z) = = for each z ¢ E, and L

is s-bounded since » is countably additive with finite total variation.
However, L is not weakly compact since E is not reflexive and thus
E = L(C(H, E),) is not weakly compact.

If S/2(I")) denotes the E-valued simple functions and Ux(X(I"))
denotes their uniform closure, then Cy(I", E) C Sy(2(1")) = Ux(2(I)).
Therefore, to define an operator U on C,([, E), it suffices to define
U on S,(3("). If &, denotes the characteristic function of Ae 3(I")
and o = (x,,;,) € E, then we define U(;,x) by the following equation:

P (U %5, if a,; €A,
bi UEa) 0  otherwise,
where P, ;. is the projection on the j,-component of the ith coordinate.
Now extend U by linearity to all of Sy(¥({")); it is not difficult to see
that U is well-defined, linear, and ||U|| < 1. Hence we may consider
U to be defined on all of C(7", E).

Then if feC(H, E), let fi(-) = f(+) — f(a.) e C(I", E), and define
V(f) to be U(f,). It follows that V is linear and continuous. Further,
if ¢ is the representing measure for V, then Loy is the represent-
ing measure for LoV, and 3=, Lip({a,. e, ] = 3 LIUG ., 006:0)] =
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>, L(e;,,;) = 3 €:,1,y and this series clearly does not converge in E.
Thus LoV is not s-bounded. In fact, the representing measure for
LoV is not even countably additive. Forif ¢ E, so that P, () =1
for each 1, then 3, L[r({a,, el = 3 L(e;,.,), a divergent series.
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