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Using the techniques of noncommutative integration
theory, classical results of Hermann Weyl concerning the
positive eigenvalues of the sum of two self-adjoint compact
operators are extended to self-adjoint operators which are
measurable with respect to a gage space. Let (H, A, m)
be a gage space and let K and L be self-adjoint operators
which are measurable with respect to (H, 4, m). Let Pg[2, co)
be the spectral projection of K for the interval [2, o) and
let Ax(x) =sup {2 | m(Pg[2, 0)) = #}. Then Ag.r(x+ 1) = Ax(a) +
A(r). If K=< L, then Ax(x) £ A, (x). If L is bounded, then
Arrr(®) £ || L ||* 4g(x) for xz = m(Pgl0, o). If q = m(support
(L)) and g < oo, then Ag(® + q) £ Ag+2(2); if ¢ = Aix(q), then
HK + Lll, = | KPx(—#, ) |l, for 1 < p < oo,

1. Notation. We specifically work in the context of a gage
space. [See 5 for definitions and notation.] We will always require
that an operator be measurable [5, Definition 2.1]. This is a technical
consideration which is necessary to avoid the pathologies which can
occur with unbounded operators. Any one of the following conditions
implies that a self-adjoint operator T is measurable with respect to
the gage space (H, A, m):

1. TeA.

2. TnA and m is a finite gage. (T7A means that UT = TU
for every unitary operator U in the commutant of A.)

3. TnA and m(support (7)) < o, where support (7) is the
orthocomplement of the nullspace of T.

4, TnA and A is abelian,

If P is a projection operator, P will be identified with the range
of P. If T is an operator, R(T) denotes the range of T and R(T)
denotes the closure of R(T). If T is self-adjoint, note that support
(T) = R(T).

(H, A, m) is a gage space. If S and T are self-adjoint operators
which are measurable with respect to (H, 4, m), then S + T(ST) will
denote the strong sum (product) of S with T; this is the closure of
the ordinary sum (product) and is self-adjoint and measurable [5,

" AdP,(\); the

Corollary 5.2]. T has spectral decomposition T=§

function P,()\) is chosen to be continuous from the right. If 7 is
an interval, P(_#) is the spectral projection of T for the interval _Z
The function 4, is defined, for x>0, by 4,{(x)=sup {\ | m(P;[\, «))=2x}.
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Note that m(P,[4:(x), o)) < «x is possible if m(LPy(4(x) — ¢, A(x))) = oo
for every ¢ > 0. A4,(x) is a nonincreasing function of x and is con-
tinuous from the left. If z > m(I), where I is the identity operator
on H, then Ax(x) = sup (8) = — oo; we will not explicitly mention this
pathology in order to avoid excessive technicality and splitting into
cases.

The author wishes to thank the referee for finding an error in
one of the proofs and for suggestions which make the paper more
readable.

2. Statement of the results. Below we state the theorems and
corollaries and prove the corollaries. The theorems are proved in
the next section. For the remainder of this paper, K and L are
self-adjoint operators which are measurable with respect to the gage
space (H, A, m).

THEOREM 1. Let ¢ = m(support (L)) and assume g < co. Then
Al + @) < A (x) for = > 0; equivalently, Ax(x) < Axi (x — q) for
x> q.

THEOREM 2. Ag. (x -+ 7) £ A(x) + A(r), for x>0, r > 0.

If (H, A, m) is the algebra of all bounded operators on H, m is
the usual trace, and K is a compact operator and has (counting
multiplicity) at least 7 + 1 positive eigenvalues, then /.(j) is the
jth positive eigenvalue of K and A (j + 1/2) is the (j + 1)st positive
eigenvalue of K. If in addition L is compact and has at least & + 1
positive eigenvalues, then Theorem 2 implies Adx..(j +k+ 1) =
Ag(G + 1/2) + Ak + 1/2) = Ap(7 + 1) + Ak + 1), which is Weyl’s re-
sult [6, Satz 1]. Similarly, Theorem 1 reduces to [6, Satz 2] if L
has finite rank.

By K< L is meant L — K = 0.

COROLLARY 1. If K < L, then Ax(z) < A (x) for x> 0.

Proof of Corollary 1. K = L + (K — L). Note that K — L <0.
Let 2> 0 and let ¢ be an arbitrary positive number with ¢ <xz. Then
Ar(x) £ A (x — &) + Ag_;(¢) by Theorem 2. Since A;_;(¢) = 0 and the
function 4, is continuocus from the left, A (z) < 4,(x).

COROLLARY 2. If K< L and f is a mondecreasing real-valued
Junction with domain (— oo, o), then m(f(K)) =< m(f(L)), provided
these quantities are both defined.

Proof of Corollary 2. m(f(K)) = E FOOYdm(Px(\) and m(f(L)) =
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r S)dm(P.(\)). The conclusion is immediate since by Corollary 1,

1(PxIn, ) < m( PN, =) and m(Py(— o, A]) < m(Px(— o, \]) for all
real numbers M. Note that the hypotheses of Corollary 2 do not
imply f(K) = f(L) [1].

THEOREM 3. Ajgin(x + 7)< Axflx) + A (r) for x> 0and r >0,
where | K| is the absolute value of the operator K.

COROLLARY 3. Let ¢ = m(support (L)) and assume g < . Then
Adig(@+ q) £ Aigrr(x) for x> 0; equivalently, Ax(x) £ Aixin(® — Q)
for x > q.

Proof of Corollary 3. Let x>0, and let ¢ be an arbitrary
positive number with ¢ < x. Since K = (K + L) — L, by Theorem 3,
Ag(@+ @)= Adiger(@—28)+ A1 (q + €)= A g n(x— €) since 4 (g+¢)=0
or —c. Now apply the left continuity of the function A ..

THEOREM 4. Assume L is bounded with mnorm ||L|l. Then
Arrr(x) Z || L Ag(x) for 0 < a < m(Pg[0, «)). In particular, if P
is a projection in A, then Apgp(x) < Ax(x) for 0 < x < m(Pg[0, ).

COROLLARY 4. Assume L is invertible and ol < |L| < bl for
some positive numbers a and b. Then a*Ax(z) < Ao (x) < bA(x) for
0 < o < m(Pgl0, ), where I is the identity operator on H.

Proof of Corollary 4. Clearly |L|<b and |L'| < 1/a. Apply
Theorem 4 to LKL and to L™'(LKL)L™* = K.

The p-norm of a self-adjoint measurable operator T is defined
{3, Definition 3.1] by [T, = (m(T[?)"* if 1<p <o and ||T]. =
sup {» | m(P [N, e0)) > 0}. Note that || T|l.. equals the operator norm
of T if the gage space is regular, that is, if the gage of every non-
zero projection is positive.

THEOREM 5. Let q = m(support (L)) and assume q < o=. Let
= Aiglq). Then [[K+ Lil, = [| KPx(—{, )i, Jor 1= p = o

3. Proof of the theorems.

LEMMA 1. Let Pand Q be projections in A. Let Y={ve H|Pv=v
and Qv =0}. Then Yec A and Y + R(PQ) = P.

Proof of Lemma 1. Let ve Y and we R(PQ),w = PQz. Then
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v, wy = v, PQz) = {Pv, Qz) = v, Qz) = {Qw, 2) = (0, 2) = 0, so that
Y | R(PQ).

Now let Py = y. Let 2z be the projection of ¥y on the subspace
R(PQ). Then y = (y — 2) + 2. Clearly z¢ B(PQ) and consequently,
P(y — z) =y — 2. In addition, (y — 2) L B(PQ). Let w be any vector.
Then {(Q(y — z), wd> =<QP(y — z), w) = {y — 2z, PQw)> = 0, so that
Qly —2)=0.

LEMMA 2. Let Pand Q be projections wn A. Let Y={ve H|Pv="v
and Qv =0}, Then m(Y) = m(P) — m(Q). In porticular, if Pv = v
implies Qv # 0, then m(Q) = m(P).

Proof of Lemma 2. By additivity of the gage and Lemma 1,
m(Y) + m(R(PQ)) = m(P). To prove the lemma, it suffices to show
that m(R(PQ)) < m(Q); this is well-known for factors but we know
of no reference for the general case. For later use, this is proved
under the assumption that P is self-adjoint but is not necessarily a
projection.

The operator PQ has polar decomposition [2, pp. 323-324] PQ =
M(QP?Q)"*, where M is a partial isometry with initial domain support
(QP*Q)'? = support (QP?Q) = R(QP*Q) and terminal domain support
(PQP)" = support (PQP) = R(PQP). Consequently, R(PQ)= R(PQP);
also m(R(PQP)) = m(R(QPQ)) since the initial domain and the terminal
domain of a partial isomerty have the same gage. Then m(R(PQ)) =
m(R(PQP)) = m(R(QPQ)) = m(Q) since R(QPQ) is a subspace of Q.

If H is finite dimensional, Lemma 2 states that the dimension of
the solution space of a system of m(Q) homogeneous linear equations
in m(P) unknowns is at least m(P) — m(Q).

Proof of Theorem 1. Let >0 and ¢ >0 and ¢ = Ag(x + ).
Then m(Pxtt—¢, «)) =z +q. Apply Lemma 2 with P= Pi[t —¢, )
and @ = support (L) to obtain m{ve H| Pxlpt — ¢, «)v = v and Lv =
O)=(@+q —qg== If Pglpt — ¢, «o)v = v and Lv = 0, then (K +
Ly, v> = (¢t — &) ||v]]% so that P ¢ — ¢, ) # 0. By Lemma 2,
M(Pxi[pt—e, ) = m{ve H| Pyt — ¢, «o)v =2 and Lv=0} = «. Since
¢ is an arbitrary positive number, A5 (x) = ¢ = Ax(x + ¢).

Proof of Theorem 2. Let 2 > 0 and » > 0, and assume Ay, (¢ +
¥) > Ap(x) + Ay(r). Let 46 = Ag (2 + v) — Ag(x) — A (r). Let P =
Py Jdg (@ + 7) — 0, ); then m(P) = « + r. Let Q be projection on
the subspace of H spanned by Px[Ax(x) + §, o) and P, [4(r) + 0, );
then m(Q) <z + .

Let Pv = v with ||v]|=1. Then (K + L)v, v) = Ag..(x + 7) —
0 = Ag(x) + A(r) + 40 — 6 > (Ax(x) + 0) + (A (r) + J), so that either
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(Kw, v) > Ax(x) + 0 or {Lw, v> > Ay (r) + d. Therefore Qv +# 0. By
Lemma 2, m(Q) = m(P), which is impossible since m(P) = = + r and
m(Q) < x 4 7.

Proof of Theorem 3. Let x>0 and + > 0. Apply Lemma 2
with P = Pg, [N + ¥, ) and @ = projection on the subspace of H
spanned by Pg[\, ) and P.[y, ) to obtain m(Px [\ + ¥, =) <
m(Q) = m(PglN, ) +m(P.lv, «)). Similarly, m(P_xinM+v, <)) =
m(P_x[N, )) + m(P_.[¥, )). Adding these inequalities yields
M(P g [N + ¥, 0)) < m(P g [N, o)) + m(Py[, o).

Let 0 be a small positive number. Then m(P g,y [4x(\) + 0 +
Ain(¥) + 8, ) = m(Pig[dix(N) + 8, o)) + m(Pp[42(¥) + 0, «)) <
A+ 9y so that die (M + ¥) < AV + Ajz(¥) + 20.

Proof of Theorem 4. Without loss of generality assume || L||=1.
We will show that m(P.xz[\, o)) £ m(Pgl, <)) for A > 0. Let x>0
and let P = Pyg[\, ). Let veH, ||v||=1, and Pv=wv. Then
(LKLwv, v) =\, so that (KXLwv, Lv) = . Since ||Lv||<1, Pg[\, o) Lv+0
and LPg[\, oo)Lv == 0. Let Q be projection on R(LPg[\, «)L); then
Qv # 0. By Lemma 2, m(P) < m(Q). But m(Q) < m(R(LPg[\, «)) be-
cause of set inclusion, and m(R(LPx[\, o)) < m(Px[\, «)); this is
proved in the last paragraph of the proof of Lemma 2.

Proof of Theorem 5. If p = co, || K+ L. =lim._ o 4 x0(6) =
lim,., 4,5(g +¢) by Corollary 3. If m(Pxgly, «)) >q, then
lim, o, Aixi(qg + €) = ¢t = || KP(—t, 1) | If m(Pigi[tt, o)) = ¢, then
Aizi(q + €) = Aigpypmi(€) for all ¢ > 0 and the result is immediate.
If m(P gy, <)) <q, then m(P (¢ — ¢, 1)) = o for every & >0, so
that lim, o, 4x(q + €) = ¢t = || KPx(— t, £4) ||

Now let 1 < p < . Since the theorem is trivial for ¢ =0,
assume #>0. If m(P g,z [N, o0))=cc for some A >0, then ||K+ L|,=co
and the theorem holds trivially. Therefore, assume m(P,x, 1[N, o))< oo
for all x> 0. Fix A, 0 <M< . Let v = m(PgipN, o)) and let
€>0. Note that if M = 4x.,(7 + ¢), then M(Pgiz(X — &, N)) = o
for every & > 0. Therefore, we can assume N > Az (Y +¢). By
Corollary 3, 4,xs0(Y + &) = Aix (7 + g + €). Therefore, m(P g [\, o)) =
7+ g + & Since ¢ is arbitrary, m(P g, [N, ) = m(Pg[N, =) —q=

m(Pialy @) for A< Now K+ Llz= | Inrdm(Pe.) =
[ Mam(P.g. ) and

IEPx(—p iz =_ [ PamPeo) = | wam(Pia().-

The conclusion follows immediately.
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