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Suppose that G is a finite p-constrained group. For some
prime p ^ 5 let S be a Sylow p-subgroup. Assume that G
admits a group of automorphisms A such that (\A\, \G\) — 1
and the fixed point subgroup of A does not involve PSL (2, p).
In this paper it is shown that under these conditions

G = OP,(G)N(Z(J(S))) .

Thompson proved in [8] that if G is a strongly p-solvable group
and OP,(G) = 1, then G = N(J(S))C(Z(S)), where S is a Sylow p-
subgroup of G. Since his paper several other stronger results of this
type have been proved by Glauberman [1], [2]. Specifically he proved
his ZJ-theorem which states that if G is ^-constrained and p-stable
then G = OP,(G)N(Z(J(S))). This implies Thompson's conclusion by
the Frattini argument. Recently Glauberman has proved that

G = N(J(S))C(Z(S))

for all p, provided that G is p-solvable and admits a group of auto-
morphisms A such that (|G|, |A|) = 1 and A has no fixed points of
order p.

In this paper our goal is a theorem related to these results.

THEOREM A. Let G be a p-constrained group with p ^ 5 and
S a Sylow p-subgronp of G. Suppose that G admits a group of
automorphisms A such that (| A\, \G\) = 1 and the fixed point subgroup
of A does not involve PSL (2, p). Then G = OP,(G)N(Z(J(S))).

Using Glauberman's ^J-theorem, Theorem A is a corollary of
Theorem B.

THEOREM B. Let G be a p-constrained group with p ^ 5. Suppose
that A is a group of automorphisms of G such that (|G|, |A|) = 1
and that the fixed point subgroup of A does not involve PSL (2, p).
Then G is p-stable.

All the groups in this paper are finite. The notation, except
for the definition of ^-stability, is standard and can be found in [3].
If P is a £>-group J(P) = <A S P\ A is abelian and of maximal order).
For simplicity we will write Z(J(P)) = ZJ(P). If K is a group, we
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say G involves if if a section of G is isomorphic to K.

1Φ Assumed results and definitions*

DEFINITION 1.1. Let G be a group with OP(G) =2 1. Let S be a
Sylow p-subgroup of G and set P = S f] OP, P(G). G is p-constrained
is CG(P) s O,,.,(G).

DEFINITION 1.2. Let G be a group and suppose that S is a Sylow
p-subgroup. G is p-stable if for any R £ S such that ROP,(G) <3 G
and for any A £ JV5(iί) with the property that [R, A, A] = 1, we
have

AC(B)/C(R) S OP(N(R)/C(R)) .

This definition of ^-stability is taken from Gorenstein-Walter [4].
It is weaker than the definition given in Gorenstein [3]. However
this definition is sufficient for Glauberman's J£7-theorem as a check
of the proof [3] will indicate.

The principal tools of this paper are two theorems of Thompson.
We state these for want of an available reference.

DEFINITION 1.3. Let p be a prime. We say that (G, M) is a
quadratic pair for p if G is a group and

( i ) M is an irreducible FpG-module,
(ii) G acts faithfully on My and
(iii) G - <Q>, where Q = {g e G - {1} \M(g - I)2 = 0}.

THEOREM 1.4 (Central Product Theorem, Thompson). Suppose
that ((?, M) is a quadratic pair for p and p ^ 5. Then for some
natural number n, the following hold.

( i ) G = G1Gi...G.,[GyfGy] = l (l£i<ji*n),
(ii) GJZiGi) is simple and (Giy AQ is a quadratic pair for i =

1,2, . . . , n ,
(iii) Q = \JU (Q Π G,),
(iv) M αraZ ilίi (x) (g) Λfn are isomorphic FpG-modules.

THEOREM 1.5 (Thompson). Suppose (G, ikΓ) is a quadratic pair
for p ^ 5, atuZ G = G/Z(G) is simple. Then for some natural number
e and q = p% G is isomorphic to one of the following groups:

A%{Q\ Bn{q), Cn{q\ DM, G2(q), F<(q), E.(q) ,

EΊ{q), 2AM, 2DM, 8 A(ί), 2E«(Q) .

Any group from the above list will be called a simple group of
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quadratic type.

2* p-Constrained groups which are not p-stable*

LEMMA 2.1. Suppose that G acts on a vector space V over GF(p)
and assume that G is generated by elements which act quadratically.
If G is not a p-group, then G contains a normal subgroup H such
that G/H is a simple group of quadratic type.

Proof. Let W be s. nontrivial composition factor of V under G.
Then G = G/CG(W) acts faithfully and irreducibly on W. Since (G, W)
is a quadratic pair, Theorem 1.5 implies the result.

THEOREM 2.2. A p-constrained group G with OP,(G) = 1 which
is not p-stable has a composition factor of quadratic type.

Proof. Since G is not p-stable there exists R<\G, R £ S a Sylow
p-subgroup, A £ NS(R) with the property that [JR, A, A] = 1, and
AC(R)/C(R) ςt OP(N(R)/C(R)). Since R < G, Φ(R) < G. Consider G =
G = G/Φ(R). G satisfies the hypotheses of the theorem so by induc-
tion Φ(R) = 1 and R is elementary abelian. Let L = C(R)(x\[R, x,
x] = 1>. By assumption C(R) a L <£ OP(G mod C(R)) and by definition
L<]G. Lemma 2.1 implies that there exists K<3L such that L/K
is simple of quadratic type.

3* Automorphisms of semisimple groups*

DEFINITION 3.1. A semisimple group is the direct product of
simple groups. The simple factors are called the components.

LEMMA 3.2. Suppose that G is a semisimple group with no
abelian components. If K<3G and K is simple, then K is equal
to one of the components.

Proof. Standard result, [5].

We prove now a basic lemma about automorphisms of a semisimple
group with isomorphic nonabelian components. Let G be the direct
product of t copies of the simple group H. Define Hi — {(1,1, , xi9 ,
ΐ)\xeH} for 1 ^ i g t. Then G is the direct product of the ί/"/s.
Two subgroups of Aut (G) are readily available. The first is L =
77 Aut (Hi) where the action is the natural one. The second is K,
the group of permutations of the 7ί/s.
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LEMMA 3.3. Aut(G) permutes the set {Hx).

Proof. This is an immediate consequence of Lemma 3.2.

THEOREM 3.4. Suppose that G is the direct product of t copies
of the simple nonabelian group H. Define K and L as above. Then
L < Aut (G), L Π K - 1, LK = Aut (G) and K ~ Sym (ί).

Proof. By Lemma 3.3 we know that every σ e Aut (G) permutes
the set {Hi, •••, Ht}. In particular there is a homomorphism

Ψ: Aut (G) > Sym (ί) .

Clearly L = ker (Ψ), and if = Ψ{K) s Sym (ί). The result follows.

4* Automorphisms of a group with a quadratic factor* The
main result of this section is the following.

THEOREM 4.1. Let G be a group with a composition factor of
quadratic type. If A g Aut (G) and (\A\, \G\) = 1, then the fixed
point subgroup of A involves PSL (2, p).

We proceed via a series of lemmas.

LEMMA 4.2. Suppose H is a simple nonabelian group of quadratic
type with respect to the prime p^5. If A g Aut (H) and (| A |, |HΓ|) =
1, £/&e% £Ae fixed point subgroup of A involves PSL (2, p).

Proof. By the main result from Steinberg [7], Aut (H) = M
contains a normal series H ϋ if £ iίί G M. Furthermore by the same
theorem there are groups ί7 and i?, F the field automorphisms and
E the graph automorphisms, such that M = ίfjE/i*7. Since every
simple group of quadratic type is a finite Chevalley group they must
all involve PSL (2, p). Thus (|A|, \H\) = 1 and p ̂  5 imply that
(I A I, 2.3, p) — 1. By order considerations Steinberg's theorem implies
that AC\H =1 and i g l , where M = HF.

Now let N - F n i?A. Then

= H(Ff]HA) =

Since A n -ff = -^ n ^ - 1, (I &\9 IA |) - 1 and N is solvable; the Schur-
Zassenhaus theorem implies that A is conjugate to N in M. If we
prove the result for a conjugate of A it is certainly true for A.
Therefore we may assume that A = N g F.

Now the field automorphisms have a fixed point subgroup which
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contains the corresponding Chevalley group over the prime field GF(p).
In particular this subgroup involves PSL (2, p). Since i g ί 7 , certainly
the fixed point subgroup of A involves PSL (2, p) as desired.

LEMMA 4.3. Let G be the direct product of t copies of H, a
simple group of quadratic type with respect to the prime p ^ 5.
Suppose that A S Aut(G) and that (\A\, \G\) = 1. Then the fixed
point subgroup of A involves PSL (2, p).

Proof. We adopt the notation presented in §3. Let A* be the
subgroup of A stabilizing Hλ. Then A*ICA*(Hύ is a subgroup of
Aut (Hi) ~ Aut (H). Therefore by Lemma 4.2 there exists subgroups
Ux and V1 contained in the fixed point subgroup of A* on Ή.γ such
that Vi/ε/ίsPSL&p).

Now let T be a transversal of A* in A. Suppose that t and u
are distinct elements of T. By Lemma 3.3 Hi = Hό and H\ — Hά for
some i and j . If i — j , then Hi = Ή.ΐ and tu~x stabilizes Ht contrary
to assumption. Thus i Φ j and [Hi, H?\ = 1. This fact implies that
the set V — {ILer^i^ 6 VJ is a group. Furthermore it implies that
the elements of V are fixed by A. If U = {ILeT x*\x e J7J, then 7/ J7s
F1/i71 = PSL (2, p) and we conclude that the fixed point subgroup of
A involves PSL (2, p).

As a consequence of Lemma 4.3 we get the following corollary.

COROLLARY 4.4. Suppose that X is the direct product of t copies
of a simple group of quadratic type with respect to the prime p ^>
5. Assume that G is a group, A g Aut (G) and G contains a factor
isomorphic to X that is normalized by A. If {\A\, \G\) = 1, then
the fixed point subgroup of A involves PSL (2, p).

Proof. Suppose that K<1L<\G and that A normalizes L/K =
X By Lemma 4.3 there exist subgroups S and T such that iΓ<3
S^T^L, T/S s PSL (2, p) and A fixes T/K. Suppose that q is a
prime divisor of | PSL (2, p) \ and let Q be a Sylow g-subgroup of T
normalized by A. Then since Q = CQ(A)[Q, A] and A fixes T/S, Q =
CQ(A)(Qr\S). Pick such a Q for each prime divisor of |PSL(2, p)\
and call this set of Sylow subgroups £/[ Then

and consequently CG(A) involves PSL (2, p).

LEMMA 4.5. Suppose G is a group with a composition factor
isomorphic to K, then G contains a semisimple factor X normalized
by A such that every component of X is isomorphic to K.
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Proof. Let F be the semidirect product of G and suppose that
{Fi} is a chief series of F containing G. Then there exists ί such
that F^ czFίCzG and FJF^ has K as a composition factor. Since
Fi/Fi-i is a direct product of isomorphic simple group, it is the
product of copies of K.

Proof of Theorem 4.1. Theorem 4.1 is now a consequence of
Lemma 4.5 and Corollary 4.4.

5* Proof of Theorem B* Theorem B is a consequence of the
following result.

THEOREM 5.1. Let Ghea p-constrained group with p ̂  5. Suppose
that A S Aut (G) and (|G|, \A\) = 1. Then if G is not p-stahle the
fixed point subgroup of A involves PSL (2, p).

Proof. Suppose that OV,{G) z> 1 and set G = G/OP,(G). G is not
^-stable and induction implies the result. Thus we may assume that
OP,(G) = 1.

Theorem 2.2 implies that G contains a composition factor of
quadratic type. Then Theorem 4.1 implies that the fixed point sub-
group of A involves PSL (2, p).
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