Pacific Journal of Mathematics

AN ELEMENTARY PROOF OF THE LIFTING THEOREM

TIM EDEN TRAYNOR

Vol. 53, No. 1

March 1974

AN ELEMENTARY PROOF OF THE LIFTING THEOREM

TIM TRAYNOR

An elementary proof is given of the lifting theorem for a complete totally finite measure space, which does not use the martingale theorem or Vitali differentiation.

Introduction. In this paper we give a proof of the lifting theorem for a complete totally finite measure space, which involves only elementary properties of measure. The complicated isomorphism theorem of Maharam's original proof [4] is avoided. On the other hand, we do not use the concepts of martingale or of Vitali differentiation ([1] [2] [3] [5]). In fact, the entire construction takes place in the σ -field of measurable sets, without passing to the algebra of essentially bounded measurable functions. We feel this makes it easier to see what is involved.

Throughout what follows:

 (S, \mathscr{M}, μ) is a complete measure space with $\mu(S) < \infty$; $\mathscr{N} = \{A \in \mathscr{M} : \mu(A) = 0\};$ N is the set of nonnegative integers; For subsets A, B of S,

$$egin{aligned} AB&=A\cap B\ ;\ Aackslash B&=\{s\in A\colon s\in B\}\ ;\ A^{c}&=Sackslash A\ ;\ AarDelta B&=AB^{c}\cup BA^{c}\ ;\ A&\doteq B\ ext{iff}\ A,\ B\in\mathscr{M}\ ext{ and }\ \mu(AarDelta B)=0\ . \end{aligned}$$

For a family \mathcal{K} of subsets of S,

$$\bigcup \mathscr{K} = \bigcup_{E \in \mathscr{K}} E.$$

1. DEFINITIONS. For any field $\mathcal{A} \subset \mathcal{M}$,

(1) d is a (lower) density on \mathscr{A} iff d is a mapping on \mathscr{A} to \mathscr{A} such that, for A, B in \mathscr{A} ,

- (i) $d(A) \doteq A$;
- (ii) $A \doteq B$ implies d(A) = d(B);

(iii) $d(\emptyset) = \emptyset, \ d(S) = S;$

- (iv) d(AB) = d(A)d(B).
- (2) l is a lifting on \mathcal{A} iff l is a density on \mathcal{A} such that
- (\mathbf{v}) $l(A^{\circ}) = l(A)^{\circ}$, for A in \mathcal{A} .

For a detailed study of liftings and their applications, we refer

to A. and C. Ionescu Tulcea [3].

2. REMARKS. Let l be a lifting on the σ -field $\mathscr{A} \subset \mathscr{M}$ and $\mathscr{F} = l[\mathscr{A}]$. Then:

(1) \mathcal{F} is a field in S.

 $(2) \quad \mathscr{F} \subset \{E \in \mathscr{A} \colon 0 < \mu(E) < \mu(S)\} \cup \{\varnothing, S\}.$

(3) If, for each n in $N, E_n \in \mathscr{F}$, and $A = \bigcup_n E_n$, then $l(A) \supset A$. (Indeed, for each $n, E_n \setminus l(A) \subset A \setminus l(A) \doteq \emptyset$, so $E_n \setminus l(A) = \emptyset$, by (2).)

3. THEOREM. If d is a density on a field \mathscr{A} with $\mathcal{N} \subset \mathscr{A} \subset \mathscr{M}$, then there exists a lifting l on \mathscr{A} , with

(*)
$$d(A) \subset l(A) \subset d(A^c)^c$$
, for A in \mathscr{A} .

Proof. For each filterbase $\mathscr{B} \subset \mathscr{A}$, let $\widehat{\mathscr{B}}$ denote an ultrafilter containing \mathscr{B} . We recall that for subsets A, B of S,

(a) $A \in \hat{\mathscr{R}}$ iff $A^{\circ} \notin \hat{\mathscr{R}}$, and

(b) $A \cap B \in \widehat{\mathscr{B}}$ iff $A \in \widehat{\mathscr{B}}$ and $B \in \widehat{\mathscr{B}}$.

For each s in S, let

$$\mathscr{F}(s) = \{A \in \mathscr{A} : s \in d(A)\}$$
.

Since d is a density, $\mathcal{F}(s)$ is a filterbase. Put

 $l(A) = \{s \in S: A \in \widehat{\mathscr{F}}(s)\}, \quad \text{for } A \text{ in } \mathscr{A}.$

By the properties (a), (b) of an ultrafilter, for A, B in \mathscr{N} , we have (v) $l(A^{\circ}) = l(A)^{\circ}$ and (iv) l(AB) = l(A)l(B). Moreover, if $s \in d(A)$, then $A \in \mathscr{F}(s) \subset \mathscr{F}(s)$, so that $s \in l(A)$. Hence, $d(A) \subset l(A)$. Similarly $d(A^{\circ}) \subset l(A^{\circ})$. Using (v) we find that (*) holds. Since $d(A) \doteq A \doteq d(A^{\circ})^{\circ}$, we have (i) $l(A) \doteq A$. If $N \doteq \emptyset$, then $d(N) = d(\emptyset) = \emptyset$ and $d(N^{\circ}) =$ d(S) = S, so that, by (*), $l(N) = \emptyset$. Hence, (iii) $l(\emptyset) = \emptyset$, l(S) = Sand (ii) if $A \doteq B$, then $l(A) \Delta l(B) = l(A \Delta B) = \emptyset$, so that l(A) = l(B). This completes the proof.

The proof of the following theorem usually uses martingales or Vitali differentiation. We use neither. However, the reader familiar with Sion [5] will recognize the connection with his method. (See Remark 7 below.)

4. THEOREM. Suppose that, for each n in N, \mathscr{A}_n is a σ -field with $\mathscr{N} \subset \mathscr{A}_n \subset \mathscr{A}_{n+1} \subset \mathscr{M}$ and l_n is a lifting on \mathscr{A}_n with $l_n = l_{n+1} | \mathscr{A}_n$. Put $\mathscr{A} = \sigma$ -field $(\bigcup_n \mathscr{A}_n)$. Then there is a lifting l on \mathscr{A} with $l_n = l | \mathscr{A}_n$, for each n in N. *Proof.* The result will follow immediately from Theorem 3 if we can construct a density d on \mathscr{A} with $d(A) = l_n(A)$ for A in \mathscr{A}_n . To this end, for each k in N, let \mathscr{F}_k denote $l_k[\mathscr{A}_k]$. For each A in \mathscr{A} , k in N, and r < 1, put

$$\mathscr{D}(A; k, r) = \{E \in \mathscr{F}_k \colon \mu(AF) \ge r\mu(F), \text{ whenever } E \supset F \in \mathscr{F}_k\},\ d(A; k, r) = \bigcup \mathscr{D}(A; k, r) \text{ , and}\ d(A) = \bigcap_{r \le 1} \bigcup_{n \in N} \bigcap_{k \ge n} d(A; k, r) \text{ .}$$

We will show that d is a suitable density function on $\mathcal A$.

For fixed A, r, and k, let \mathscr{K} be a maximal disjoint subfamily of $\mathscr{D}(A; k, r)$. Then \mathscr{K} is countable. Put $B = l_k(\cup \mathscr{K})$. Clearly, $B \in \mathscr{D}(A; k, r)$. Moreover, if $E \in \mathscr{D}(A; k, r)$, $E \setminus B = \emptyset$, by Remark 2(3) and the maximality of \mathscr{K} . This shows that d(A; k, r) = B is the largest element of $\mathscr{D}(A; k, r)$. In particular, $d(A; k, r) \in \mathscr{F}_k \subset \mathscr{A}$. If r < s < 1, we have $d(A; k, r) \supset d(A; k, s)$, so we need only consider rational r. Since \mathscr{A} is a σ -field, we conclude that $d(A) \in \mathscr{A}$.

There is no difficulty in showing that $A \doteq B \in \mathscr{A}$ implies d(A) = d(B), or that $d(A) = l_n(A)$, for A in \mathscr{A}_n . In particular, $d(\emptyset) = \emptyset$ and d(S) = S. We have left to check conditions (i) and (iv) of the definition of a density.

To check condition (iv), let A, $B \in \mathcal{M}$, $k \in N$, r < 1. For each F in \mathcal{F}_k contained in $d(A; k, (r+1)/2) \cap d(B; k, (r+1)/2)$, we have

$$egin{aligned} \mu(ABF) &= \mu(AF) + \mu(BF) - \mu((A \cup B)F) \ &\geq ((r+1)/2)\mu(F) + ((r+1)/2)\mu(F) - \mu(F) \ &= r\mu(F) \;. \end{aligned}$$

Hence, $d(A; k, (r + 1)/2) \cap d(B; k, (r + 1)/2) \subset d(AB; k, r)$. By direct computation, this yields $d(A)d(B) \subset d(AB)$. On the other hand, for each k and r, $d(AB; k, r) \subset d(A; k, r) \cap d(B; k, r)$, so that $d(AB) \subset d(A)d(B)$, establishing (iv).

To verify condition (i), let $A \in \mathcal{M}$ and put

$$d'(A) = \bigcup_{0 < r < 1} \bigcap_{n \in N} \bigcup_{k \ge n} d(A; k, r) .$$

We will show that

- (a) $d'(A)A^{\circ} \doteq \emptyset$,
- (b) $Ad'(A^c) \doteq \emptyset$, and
- $(c) \quad d'(A^{\circ}) \supset d(A)^{\circ}, \ d'(A) \supset d(A),$

from which we get

$$d(A) {arDet A} = d(A) A^{\mathfrak{c}} \cup A d(A)^{\mathfrak{c}} \subset d'(A) A^{\mathfrak{c}} \cup A d'(A^{\mathfrak{c}}) \doteq arnothing \ ,$$

as required.

Fix r in (0, 1) and write $D_k = d(A; k, r)$, for k in N. Since $D_k \in \mathscr{D}(A; k, r)$, we have for each B in \mathscr{M}_k ,

$$\mu(ABD_k)=\mu(Al_k(B)D_k)\geq r\mu(l_k(B)D_k)=r\mu(BD_k)\;.$$

Suppose $B \in \bigcup_n \mathscr{M}_n$. Then there exists an n in N such that $B \in \mathscr{M}_n$. For $m \ge n$, $\mathscr{M}_m \supset \mathscr{M}_n$, and putting $C_m = BD_m \setminus \bigcup_{n \le k < m} D_k$, we have

$$egin{aligned} \mu(ABigcup_{k\geq n}D_k) &= \sum\limits_{m\geq n}\mu(AC_m)\ &&\geq \sum\limits_{m\geq n}r\mu(C_m)\ &&= r\mu(Bigcup_{k\geq n}D_k) \;. \end{aligned}$$

Taking intersections over n we have

$$\mu(AB\bigcap_{n}\bigcup_{k\geq n}D_k)\geq r\mu(B\bigcap_{n}\bigcup_{k\geq n}D_k).$$

By considering monotone sequences of such B we see that this holds for all B in \mathscr{N} , the σ -field generated by the field $\bigcup_n \mathscr{N}_n$. In particular, putting $B = A^c$ we have $0 \ge r\mu(A^c \bigcap_n \bigcup_{k\ge n} D_k)$. But r > 0, so $\mu(A^c \bigcap_n \bigcup_{k\ge n} D_k) = 0$. Taking the union over rational r in (0, 1)we have $A^c d'(A) \doteq \emptyset$. This proves (a). Replacing A by A^c we have (b).

To prove (c) we let $k \in N$, 0 < r < 1 and show

$$d(A; k, r)^{\circ} \subset d(A^{\circ}; k, 1 - r)$$
.

To this end suppose $\emptyset \neq E \in \mathscr{F}_k$ and $E \subset d(A; k, r)^\circ$. Then $E \notin \mathscr{D}(A; k, r)$, so there exists F in \mathscr{F}_k contained in E with $\mu(AF) < r\mu(F)$. Let \mathscr{K} be a maximal disjoint collection of such F. By Remark 2(3) and maximality of \mathscr{K} we have $E \setminus l_k(\bigcup \mathscr{K}) = \emptyset$, so $E = l_k(\bigcup \mathscr{K})$. Moreover, $\mu(AE) = \sum_{F \in \mathscr{K}} \mu(AF) \leq \sum_{F \in \mathscr{K}} r\mu(F) = r\mu(E)$. In other words, $\mu(A^\circ E) \geq (1 - r)\mu(E)$. This shows that $d(A; k, r)^\circ \in \mathscr{D}(A^\circ; k, 1 - r)$, so $d(A; k, r)^\circ \subset d(A^\circ; k, 1 - r)$. Hence,

$$d(A)^{\circ} = igcup_{r \in (0,1)} igcap_n igcup_{k \ge n} d(A; k, r)^{\circ} \ \subset igcup_{r \in (0,1)} igcap_n igcup_{k \ge n} d(A^{\circ}; k, 1-r) \ = d'(A^{\circ}) \;.$$

Since it is clear that $d(A) \subset d'(A)$, this proves (c) and completes the proof of the theorem.

To prove the lifting theorem, we need one more lemma, due to A. and C. Ionescu Tulcea [2]. For completeness, we include a proof here.

5. LEMMA. Let \mathscr{A} be a σ -field with $\mathscr{N} \subset \mathscr{A} \subset \mathscr{M}$, l a lifting

on \mathscr{A} . If $A \in \mathscr{M} \setminus \mathscr{A}$ and $\mathscr{A}' = field (\mathscr{A} \cup \{A\})$, then there exists a lifting on \mathscr{A}' extending l.

Proof. Let $\mathscr{F} = l[\mathscr{A}], \mathscr{C} = \{E \in \mathscr{F} : \mu(EA^\circ) = 0\}$. Let \mathscr{K} be a maximal disjoint subfamily of \mathscr{C} and let $A_1 = l(\bigcup \mathscr{K})$. Then $A_1 \in \mathscr{C}$ and, by maximality of \mathscr{K} and Remark 2(3), $E \setminus A_1 = \emptyset$, for all E in \mathscr{C} , so that A_1 is the largest element of \mathscr{C} . Similarly, let A_2 be the largest E in \mathscr{F} with $\mu(EA) = 0$. Put $\overline{A} = (A \cup A_1) \setminus A_2$. Then $\overline{A} \doteq A$. (Indeed, $\overline{A} \varDelta A \subset A_1 A^\circ \cup A_2^\circ A \doteq \emptyset$.) Thus, $\mathscr{A}' =$ field $(\mathscr{M} \cup \{\overline{A}\}) (= \{(C\overline{A} \cup D\overline{A}^\circ: C, D \in \mathscr{M}\})$. For E, F in \mathscr{F} ,

(a) $E\bar{A} \doteq F\bar{A}$ implies $E\bar{A} = F\bar{A}$, and

(b) $E\bar{A}^{\circ}\doteq F\bar{A}^{\circ}$ implies $E\bar{A}^{\circ}=F\bar{A}^{\circ}$.

Indeed, $E\bar{A} \doteq F\bar{A}$ implies $\mu((E\Delta F)A) = \mu((E\Delta F)\bar{A}) = 0$, so that, by definition of A_2 , $E\Delta F \subset A_2 \subset \bar{A}^c$. Thus, $(E\Delta F)\bar{A} = \emptyset$, so $E\bar{A} = F\bar{A}$. The proof of (b) is similar.

Now define l' on \mathcal{M}' by

$$l'(C\bar{A} \cup D\bar{A}^c) = l(C)\bar{A} \cup l(D)\bar{A}^c$$
, for C, D in \mathscr{A} .

Using (a) and (b) we see that l' is well-defined and that for M_1 , M_2 in \mathscr{N}' , $M_1 \doteq M_2$ implies $l'(M_1) = l'(M_2)$. The other properties of a lifting are easily verified. Moreover, for C in \mathscr{N} , $l'(C) = l(C)\overline{A} \cup l(C)\overline{A^{\circ}} = l(C)$, so l' extends l.

We can now prove the lifting theorem:

6. THEOREM. Let (S, \mathcal{M}, μ) be a complete measure space with $\mu(S) < \infty$. Then, there exists a lifting on \mathcal{M} .

Proof. Let \mathscr{H} be the set of pairs (\mathscr{A}, l) where \mathscr{A} is a σ -field with $\mathscr{N} \subset \mathscr{A} \subset \mathscr{M}$ and l is a lifting on \mathscr{A} , with the ordering: $(\mathscr{A}, l) \leq (\mathscr{A}', l')$ iff $\mathscr{A} \subset \mathscr{A}'$ and $l = l' | \mathscr{A}$. We show that \mathscr{H} has a maximal element. Indeed, suppose $\mathscr{H}' = \{(\mathscr{A}_i, l_i): i \in I\}$ is a totally ordered subfamily of \mathscr{H} . We distinguish two cases:

(a) If \mathscr{H}' has no countable cofinal subfamily, put $\mathscr{A} = \bigcup_{i \in I} \mathscr{A}_i$ and $l(A) = l_i(A)$, for A in \mathscr{A}_i , i in I. Then (\mathscr{A}, l) is an upper bound for \mathscr{H}' in \mathscr{H} .

(b) If \mathscr{H}' has a countable cofinal subfamily $\mathscr{H}'' = \{(\mathscr{A}_{i_n}, l_{i_n}): n \in N\}$, then by Theorem 4, \mathscr{H}'' (and hence \mathscr{H}') has an upper bound in \mathscr{H} . By Zorn's lemma, we conclude that \mathscr{H} has a maximal element, (\mathscr{A}, l) .

By Lemma 3, and maximality, $\mathscr{M} = \mathscr{M}$, and the theorem is proved.

7. REMARKS.

(1) To see the relationship of our method to that of Sion [5],

for each k in N and s in S, let $\hat{\mathscr{F}}_k(s) = \{F \in \mathscr{F}_k : s \in F\}$, directed downward by inclusion. Then,

$$d(A;\,k,\,r)=l_k\Bigl(\Bigl\{s\in S: \lim_{F\in\widehat{\mathscr{F}_k}(s)}rac{\mu(AF)}{\mu(F)}\geqq r\Bigr\}\Bigr)\,.$$

(One inclusion is obvious, the other follows from Sion's Theorem 2'.)

(2) As several authors have pointed out (see, for example, Sion [5], and for more references, Sion [6]), liftings provide very special Vitali differentiation system, even when no others are available. (If l is a lifting on \mathcal{M} , such a system is obtained by assigning to each s in S, $\{F: s \in F \in l[\mathcal{M}]\}$, directed downward by inclusion.) Apart from our desire for an elementary proof, this was our main motivation in looking for a construction of a lifting without using differentiation concepts.

(3) Added in proof. S. Graf [On the existence of strong liftings in second countable topological spaces, (to appear)] has noticed that one may change the word "lifting" to "density" in the statement of Theorem 4. The proof is essentially contained in our proof. Graf has independently obtained a proof of this result (using Radon-Nikodým derivatives).

References

1. G. Hansel, Théorème de relèvement et mesures bivalent, Ann. Inst. Poincaré 8 (1972), 395-401.

2. A. and C. Ionescu Tulcea, On the lifting property I, J. Math. Annal. Appl., 3 (1961), 537-546.

3. ____, Topics in the Theory of Lifting, Springer-Verlag, 1969.

4. D. Maharam, On a theorem of Von Neuman, Proc. Amer. Math. Soc., 9 (1958), 987-994.

5. M. Sion, A proof of the lifting theorem, Univ. of British Columbia, 1970.

6. _____, A Theory of Semigroup-valued Measures, Univ. of British Columbia 1971-72.

Received August 1, 1973 and in revised form October 3, 1973. This work was supported by the Summer Research Institute of the Canadian Mathematical Congress.

UNIVERSITY OF WINDSOT

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by Intarnational Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 53, No. 1 March, 1974

Martin Bartelt, Strongly unique best approximates to a function on a set, and a finite	
subset thereof	1
S. J. Bernau, <i>Theorems of Korovkin type for L_p-spaces</i>	11
S. J. Bernau and Howard E. Lacey, <i>The range of a contractive projection on an</i>	
L _p -space	21
Marilyn Breen, Decomposition theorems for 3-convex subsets of the plane	43
Ronald Elroy Bruck, Jr., A common fixed point theorem for a commuting family of	
nonexpansive mappings	59
Aiden A. Bruen and J. C. Fisher, <i>Blocking sets and complete k-arcs</i>	73
R. Creighton Buck, Approximation properties of vector valued functions	85
Mary Rodriguez Embry and Marvin Rosenblum, Spectra, tensor products, and	
linear operator equations	95
Edward William Formanek, <i>Maximal quotient rings of group rings</i>	109
Barry J. Gardner, <i>Some aspects of T-nilpotence</i>	117
Juan A. Gatica and William A. Kirk, A fixed point theorem for k-set-contractions	
defined in a cone	131
Kenneth R. Goodearl, Localization and splitting in hereditary noetherian prime	
rings	137
James Victor Herod, Generators for evolution systems with quasi continuous	
trajectories	153
C. V. Hinkle, <i>The extended centralizer of an S-set</i>	163
I. Martin (Irving) Isaacs, Lifting Brauer characters of p-solvable groups	171
Bruce R. Johnson, <i>Generalized Lerch zeta function</i>	189
Erwin Kleinfeld, A generalization of $(-1, 1)$ rings	195
Horst Leptin, On symmetry of some Banach algebras	203
Paul Weldon Lewis, <i>Strongly bounded operators</i>	207
Arthur Larry Lieberman, Spectral distribution of the sum of self-adjoint	
operators	211
I. J. Maddox and Michael A. L. Willey, <i>Continuous operators on paranormed</i>	
spaces and matrix transformations	217
James Dolan Reid, On rings on groups	229
Richard Miles Schori and James Edward West, Hyperspaces of graphs are Hilbert	
<i>cubes</i>	239
William H. Specht, A factorization theorem for p-constrained groups	253
Robert L Thele, Iterative techniques for approximation of fixed points of certain	
nonlinear mappings in Banach spaces	259
Tim Eden Traynor, An elementary proof of the lifting theorem	267
Charles Irvin Vinsonhaler and William Jennings Wickless, <i>Completely</i>	
decomposable groups which admit only nilpotent multiplications	273
Raymond O'Neil Wells, Jr, Comparison of de Rham and Dolbeault cohomology for	
proper surjective mappings	281
David Lee Wright, The non-minimality of induced central representations	301
Bertram Yood, Commutativity properties in Banach*-algebras	307