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Let G be a finite p-group and © a minimal faithful per-
mutation representation of G possessing the minimal number
of generators of the centre of G transitive constituents. One
surmises that the induced representation, ($', of the centre
of G, is minimal. The conjecture is validated subject to either
of the hypotheses | G | ^ p* except G = Q8 X Z± or Z(G) ^ n
copies of the cyclic group of order pm and is trivial when G
is abelian. However, a group of order p6 shows the conjec-
ture to be false for p odd, also. The converse problem of
extending minimal representations of Z(G) to minimal rep-
resentations of G is also, in general, not possible.

NOTATION. G a finite group, Z{G) is the centre of G, d(Z(G))
is the minimal number of generators of Z(G). When G is a p-group
Q^G) = (geG\gp = e). Zpm is the cyclic group of order pm. μ(G)
is the least natural number n such that G can be embedded in the
symmetric group of degree n.

Let © — {(?!, , Gn} be a collection of subgroups of a finite
group G and Xt be the set of distinct cosets of Gt in G. The tran-
sitive action of G on Xt defines a permutation representation of G
on the set X = U?~i -£ with kernel core (Π?=i Gt). A faithful rep-
resentation is called minimal in case \X\ = Σ?= 1 \G: G< | is minimal
over all faithful ©. Suppose now that G is a p-group and d ~
d(Z(G)). Then by [1] Theorem 3 n = d f or p Φ 2 whilst when p =
21/2d ^ n ^ df the upper bound being attained. It is assumed
throughout that n = d thereby imposing a restriction on © only
when p = 2.

The problem is approached by first classifying minimal representa-
tions ©, say, of finite abelian p-groups (with a restriction on @ if
p = 2) and then observing two elementary properties regarding the
structure of Gt Π Z(G).

1* Minimal representations o£ abelian groups*

THEOREM 1. Let G be a finite abelian p-group with n^2.
Suppose © = {Gu , Gn} is a minimal faithful permutation rep-
resentation of G and Kt = Πi=i G3 , then

G = X Kt and Gt = Π ^
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NOTE. Any ® of this form is a minimal representation of G,
so this theorem characterizes minimal representations of abelian p-
groups, p Φ 2.

Proof. If G = Z1 x x Zn with Zt cyclic then we know that
the Gi can be reordered so that G* Π Zt = E (see [2], Lemma 2).
Hence | G : G* | ^ | ^ | . Suppose for some k, \G:Gk\> \Zk\, then

± \ t \ ± \ t \
so that \G:Gt\ = \Zt\, for all 1 <; i ^ n. Now

: Π Gi ^ Π IG: Gj I, Pointcare's theorem

Π

I t follows that | Kt \ ̂  | Z, \ and | χ ? = 1 iί", | ^ Π?=i I ^ | = | G | so that
G = XU Ki and 1^1 = 1^1 (see [3], Lemma 0). Also, G, 3 Π"=i ^

but IG: Πi=i -^i I = I ^ I = I Zt \ = \ G: Gt \ and the lemma is now clear.
jΦi

From the proof of [1], Proposition 2 we conclude that whenever
G and H have coprime orders any stabilizer in a minimal representa-
tion of G x H has the form G1x Hoτ G x H19 G, ̂  G, H,^ H. By
decomposing an abelian group A into the direct product of its Sylow
p-subgroups we easily generalize Theorem 1 to classify minimal rep-
resentations of abelian groups (of odd order).

2* Induced central representation* Throughout this section
whenever © - {Glf , G J , n - d(Z(G)).

LEMMA 2. No generator of G< Π Z{G) is a p-power of any ele-
ment in Z(G) provided ® is minimal.

Proof. Let Ht = (Πi=i Gi) Π Z(G). Since G, 3 H, x x iϊ,,! x

ί ί ί + 1 x x £ΓW, see [3] lemma, it follows that ώ(G£ Π Z(G)) — n — 1.
Suppose G, Π Z(G) = <% | & 6 /> and ^ = y\ for some j . Then 11\ ^
^ - 1. Define Γ = <xk, y\keI\{j}> 3 G, n Z(G). Clearly, ΩX(Y) =
A(G, fl Z(G)) and ΓG, Π -^(G) = Y. Thus, the representation {Gu ,
G,_!, FG,, G ί+1, , Gn} is faithful. The minimality of © yields ΓG, =
G, so that Y= GiPiZiG). It follows that x, e (%k\kel\{j}}, con-
tradicting that xt is a generator of G.

The next lemma is easy to verify.
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LEMMA 3. Let A — χ*=1 {α*) be an abelian p-group with d(A) =
n. IfB^A with d(B) = n — 1 such that no generator of B is a
p-power of any element of A then

(i) B = (fli\j € N\{s}, some s>, where N = {k 11 ̂  k ^ n)
or

(ii) JS = <flra
rs, ak\reJ,keK,J[)K= N\{s}, some s, JΓ\K=Φ}.

COROLLARY. If Z(G) = Z, x x Zn with Zt = <s4> cyclic then

GiΠZ(G) = (zj\jeN\{s}}

or

Gt ΓΊ Z(G) = (zrzϊ, zk\reJ,keK,JuK= N\{s}, J f] K = Φ) .

Proof. By Lemma 2 Gt Π Z(G) and Z(G) satisfy the conditions
of Lemma 3.

Write ©' = {Gx n Z(G), , GΛ Π Z(G)} then:

LEMMA 4. ©' is minimal whenever Z(G) ~ n copies of Z™.

Proof, n — 1 is trivial. For nΦl, by the corollary to Lemma
3 we deduce \Z\Gi{\ Z(G) \ = pm, 1 ^ i ^ nf yielding deg®' = npm

and ©' is minimal.

THEOREM 5. If | G \ ̂  p5 then ©' is minimal, except for the
case p = 2, G = Q8 x Z4, ίfee direct product of the quaternionic group
of order 8 and the cyclic group of order 4.

Proof. We already have the result if G is abelian or Z(G) is
isomorphic to n copies of Z™. This leaves the case: | G | = p\
Z(G) = <«!> x <̂ 2> ̂ ^ 2 χ ^ , If G = H x K and is non-abelian then
K ~ Zv or £" ~ Zp*. Let © = {Glf G2} be a minimal faithful rep-
resentation of G. By [3], μ(G) = μ(E) + μ(K). When Ϊ S J Z , ,
\G:Gt\ = pf say, and Gx Π Z(H) Φ E. By the corollary to Lemma 3,
Gt a Z(H), so that ©' is minimal. If K s ZP2, then except for the
case p = 2 and £Γ= Q8, ^( ί ί ) = p2. Therefore, μ(G) = p2 + p2 and
I Gx I = IG21 = p\ As above, ©' not minimal implies G, Π ̂ ( ί ί) = E =
G2 n Z(ff). I t follows that G = G ^ ( H ) = G ^ f f ) and Gίf G2 are
normal subgroups of G. Hence, G! ΓΊ G2 is a nontrivial normal sub-
group of G, contradicting the faithfulness of ©. When G = Qsx Zi9

suppose Q8 = <α?, j/1 α;2 = /̂2, α;y = α;"1), Z4 = <« | »* = e>. Then © =
{Qs, (%z)} is minimal but ©' = {<α?2>, <α?V>} is not. Under the hy-
pothesis G 0 Q8 x Z4, (a) any counterexample is not a nontrivial direct
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product. We also have, (b) gp is central for all geG, since G/Z s
Zp x Zp. By Lemma 2, since | Gx Π Z(G) | = p = | G2 Π Z(G) |, we may
assume without loss of generality that Gι Π Z(G) = <z2>, G2 Π Z(G) =
<£fr£2> where (r, p) = 1 because G* 2 <sf> implies Gi 3 <#!>. Also,
if I (?. I = p 3 then G, Π £*2 = E yields G = G ^ : Let geGif heG then
& = 9ιZ, g1 e G^ 2 e Z9* hence # λ = g9ιZ — g92 e G* so G* is normal in G
and G = Gi x ZP2, contradicting (a). We deduce, (c) \Gt\ ^ p2> i =
1, 2 and μ(G) ^ 2p3.

Let M be a maximal subgroup of G containing £(G), then M is
abelian and has one of the forms:

( i ) M = <α> x <δ> x <c> s ^ 2 x ZP x ZP,
(ii) Af = <α> x <6> ~ Zv* x ZP,
(iii) ikf = <α> x <6> = ZP* x Z p 2 .

Case (i). We can choose α, 6, c so that Z(G) = <α> x <δ> and then
[<α, c> n <δ, c>] Π Z(G) - <c> n Z(G) = S giving ^(G) ^ p2 + p3 < 2p\
contradicting (c). Case (ii). Z(G) = (ap) x <6>. Suppose G/M = <cM>.
cp = e implies case (i) holds. cp Φ e then cp = aprb8 by (b). If j> | r,
let cx = ca~r£ M then cf = 6s and {<α>, <clt δ>} is faithful of degree
less than 2p3. Hence for all c e G\M (c) Π <α> Φ E. Let © = {Gl9 GJ
be minimal then by Lemma 2, Gt Π <α> = JE and it follows that | Gέ | =
p, contradicting the minimality of ©. Case (iii). Without loss of
generality we may assume Z{G) = <α> x (bp). Suppose G/M = (cilί).
cp = e implies case (i) holds. If cp2 Φ e then <c> Π (a) = E or <c> Π
<δ> - E so that | c | = p* and {<c>, <α>} or {<c>, <6>} is faithful of
degree less than 2p\ This leaves the case cp2 — e. cp is central,
cp = aprbps, say, but (ca~r)p = &p8 and cα~r e M. As above, δp s = e
reduces to case (i). We may now assume that

G = <α, 6, c I αp2 = 6p2 - cp2 = β - [α, 6] - [α, c], δp = cp, [b, c] = apubpv) .

If a

pu = e then G is a nontrivial direct product. If bpv Φ e we can
choose α so that [6, c] = (αpδp)ϊ; then [ab, ac] = [6, c] = (αδ)pv but G =
(α, αί>, αc) and we proceed as above. By suitable choice of a it
remains to eliminate the case [6, c] = ap. Since (δ~1c)p = [δ, c]~ 1 / 2 p ( p + 1 ),
when p Φ 2 {b~ιc)9 — β and when p — 2 (a6-1c)2 = e. In either case
G/M can be generated by an element of order p. This completes the
argument.

While attacking groups of order p6 by identical methods to Theo-
rem 5, one obtains the following counterexample.

T H E O R E M 6. Let G = (a,b,c\ apZ = bp2 = cp = 1 = [a, b] = [α, c],

[c, 6] = αp2> then
( i ) IG I = pQ and Z(G) = (a) x <δp> ~ ZPz x ZP,
(ii) G is πoί a nontrivial direct product,
(iii)
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(iv) © = {<αδ, c>, <δ>} is a minimal representation of G, but
©' = {<α6, c> Π Z(G), <6> Π Z(G)} is not minimal.

Proof, (i) For 1 ^ i ^ p2 define at9 βif 7* by

at: (r, i, s) h-> (r, i, s + 1)

A: (r, i, s) h- (r + s, ί, s + 2)

7<: (r, i, s) H-> (r + 1, ί, s)

1 ^ r, s ^ p, mod p in the first and third components [i.e., aλ =
((1, 1, 1)(1, 1, 2) . . . (1, 1, p))((2, 1, 1)(2, 1, 2) . (2, 1, p)) ((p, 1, 1)
(p, 1, p))]. a:*, βi9 Ύi each have order p and [a:*, /Sj = 7*. Define λ,
μ, y as follows

ί(r, i + 1, s), 1 ^ i ^ p2

λ: (r, t, s) h-> J
l(r + 1, 1, 8), i - p2

iM = ( 1 2 . . . p β ) Π A

^ 11 w ι

λ, μ, v satisfy XpS = μp2 = ^ = 1 = [λ, μ] = [λ, v], [v, /̂ ] = λ^2. Clearly
any element of G has the form aΨck, 0 tί i < P3, 0 ^ j < p\ 0 tί k <
p and the representation shows that these are distinct and (i) follows.

(ii) Suppose G = Hx K, then Z(G) = Z(H) x Z(K). We may
assume Z(H) ~ ZP and Z(K) = (abps) ^ Zp*. K Π <δ> = E implies
\K\ <^ p\ If \KI — p4 K and if are abelian and consequently G is
abelian. I t follows that \K\ = \H\ = p\ Therefore, there exist
he H and r, 0 ^ r < p3 such that c = (abps)rh then [&, δ] = [(αδps)r^, δ]
(since (abps)r is central) = [c, δ] = αp2. But H is normal in G and so
α2'2 = [h, b] G i ϊ Π K, a contradiction.

(iii) Let © = {Gί9 G2} be a minimal faithful representation of G.
This always exists by [1], Theorem 3. If \G:Gt\ = p then G% is
normal in G and G is a nontrivial direct product. Therefore,
IG: G, I ̂  p2, i = 1, 2. For some i, G, Π <α> = £7, since © is faithful
suppose, say, GL Π <α> — E. If | Gι \ = p3, G = GL x <α> since α is
central. Hence μ{G) ̂  p2 + p* but (i) exhibits a faithful representa-
tion of degree p 2 + p4. The final part of the theorem is now easy.

The converse problem: Given ©' = {Zu , Zn}, n = d(Z(G)) a
minimal representation of Z{G), does there exist a minimal representa-
tion © = {G19 , G J of G such that G, Π ̂ (G) = ZJ The answer
to this question is quickly found to be negative.
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LEMMA 7. Let G = H x K where H = <α, b \ ap = bv = [α, δ]>
i£ = <e I cp = β) £/&e% ©' = {(α^c), <V>} is α minimal representation of
Z(G) which cannot be extended to a minimal representation of G.

Proof. When p Φ 2 H is the non-abelian group of order p* con-
taining an element of order p2 and when p = 2 H is the quaternionic
group of order 8. Z(H) — (ap) and ©' is obviously minimal. Now

(aΨ)p = V'ib-ί'aΨ'Xbzί^aΨ"-") (b'WV) , j Φ 0

= aιi+i)P+iiPlί+'"+P), s i n c e α δ = ap+1, (α*) 6 * = α ί ( m ^ + 1 ) .

I. p ^ 2 then p\(l+ + p) = 1/2 p(p + 1) and

( * ) (aΨck)p = a{i+j)P for all i, i, fc .

Every element of G has the form α δ̂̂ ĉ , 0 S i < v\ 0 <; i, Λ < p.
If Gi 2 (α^c) then α*6yc* e Gγ implies that i + j = 0 (mod p) i.e., i =
rp — i consequently for each choice of i there is only one choice for
j . I t follows that | G1 \ ̂  p2 and | G: GL | ^ ί?2 since Gx Π <c> = Ϊ7. By
(*), {a¥-ιY = ap2 = e, (abp~ι) n Z(£Γ) = E and trivially μ ( # ) = P2

By [3], /£(G) = μ(H) + /ί(ΛΓ) - p 2 + p. G2 a <c> so £ ( # ) Π G2 = E
and {if, G2} is faithful. Therefore, | G: ff | + | G: G21 ̂  ^(G) = p2 + p
and IG: G21 ̂  p2. Hence deg {Gu G2} = | G: G, | + | G: G21 ̂  2p2 >
proving {G^ G2} is not minimal.

Case II. p = 2, μ(2Γ) - 8 and μ(G) = μ ( # ) + M^) = 10» b y [3].
becomes

α2, otherwise .

One easily checks that Gι = <α2c>, G2 = <c> and degίG^ G2} = 16 >
μ{G) which proves the lemma.
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