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A stably almost complex structure on a smooth manifold
M is an automorphism J: τM 0 θk —> τM 0 θk for some k ^ 0,
covering the identity map on ilf, and satisfying J2 = —1. If
A; = 0, J is an almost complex structure. An involution
T:M->M is a conjugation of (M, J) if there exists an in-
volution a: θk —» θ* covering T, such that T*@a is conjugate
linear, i.e., (T* 0 α ) o j = — Jo(T* ©α). The bordism theory
of conjugations has been studied by R. Stong. In § 2 of this
article it is shown that every closed %-manifold can be
realized as the fixed point set of a conjugation on a closed,
2%-dimensional stably almost complex manifold. This should
be compared to the result of Conner and Floyd that the
fixed point set of a conjugation on an almost complex 2n~
manifold is ^-dimensional, which is false for stably almost
complex manifolds. The proof will use the following result:

LEMMA 1. Every closed manifold is cobordant to the fixed point
set of a conjugation on a closed, almost complex manifold.

Let Hm>n(C) c Pm{C) x Pn(C) with m ^ n, be the hypersurface
defined as the locus of wozo + W& + + wmzm = 0 (in homogeneous
coordinates (w0, •••, wm) and (z0, •••, zj). Let Hmn(R) be the corre-
sponding real hypersurface. Then generators for the cobordism
ring η* can be taken to be the manifolds P2n(R) and Hmn(R), which
are fixed point sets of conjugations on P2n(C) and Hmn(C) respec-
tively. The preceding lemma follows easily.

In § 3, almost complex conjugations on S2q+1 x S2q+1 are given,
with fixed point set S2q+1. As a consequence, any manifold obtained
from P2n(R) or Hmn{R) by surgeries on odd dimensional spheres, is
itself the fixed point set of a conjugation on an almost complex
manifold.

We will also need the following definition. If T is a free in-
volution on a compact manifold M, a characteristic submanifold for
(M, T) is a submanifold Mf a M of codimension 1, such that M =
W+ U W_ (where W+ and TF_ are compact submanifolds of M),
M' = W+ Π W_, and T(W+) = TΓ_. M' can always be obtained as
the pullback of PN~ι by an equivariant map (M, T) —• {PN, A)f where
A is the antipodal map.

2* Stably almost complex structures*
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LEMMA 2. The tangent sphere bundle of a manifold is stably
almost complex and the bundle involution is a conjugation.

Proof. Let D(M) denote the tangent disc bundle of M, and
S(M) the sphere bundle, with projection map π. There is an iso-
morphism τD{M) = π*τM Θ K*TM>

 a n d a n almost complex structure can
be defined by (x, y)—*{—y, x). The bundle involution acts as — 1 in
the bundle tangent to the fibres, identified with the second sum-
mand, and is a conjugation. Restricting to S(M) gives a conjuga-
tion on τS(M) (&Vs(M)> v being the normal bundle to the boundary
which is Θι.

This lemma provides an important example of stably almost
complex manifolds. We are now ready to state the main result of
this section.

THEOREM 1. Every closed n-dimensional manifold is the fixed
point set of a conjugation on a closed 2n-dimensional stably almost
complex manifold.

Proof. Choose a cobordism (Wn+\ Fu Fz) with F2 an arbitrary
closed w-manifold. Assume F1 is the fixed point set of a conjuga-
tion on the closed, almost complex manifold Mγ. We will construct
a closed, stably almost complex 2w-manifold M2, with conjugation
having fixed point set F2. Let B denote the tangent sphere bundle
to W. Then bB is the unit sphere bundle in τhw © ι>bw, and the
normal bundle of bB in B is trivial. There is then an induced
stable almost complex structure and conjugation on bB. Note that
throughout this paper, bM will denote the boundary of the mani-
fold M.

LEMMA 3. The tangent sphere bundle to bW is a stably almost
complex submanifold of bB, invariant under the conjugation.

Proof. Over bW the bundle τw splits as τbwφvbw and π*vbw can
be identified with the normal bundle in bB, of the tangent sphere
bundle to bW. This normal bundle is trivial, so there is an induced
stable almost complex structure. Now let S denote the tangent
sphere bundle to bW.

LEMMA 4. There is a stably almost complex submanifold VaB,
invariant under the conjugation, with bV = VΓ\bB — S.

Proof. The involution T on B is free, and S is a characteristic
submanifold for the restriction T\bB. There is a map f:bB/T~> PN,
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for N sufficiently large, that is transverse regular on PN~ι and with
S/T= f-'iP"-1). /extends to a map F:B/T->PN, transverse
regular on PN~\ Pulling back PN~ι under F and lifting to the two-
fold covering gives the desired submanifold V. Notice that S is the
disjoint union of the tangent sphere bundles to F1 and F2.

There is a submanifold, V, of the tangent disc bundle to W
consisting of V and the tangent disc bundle of b W. This has trivial
normal bundle and is invariant under T. There are corners along
S, which can be rounded off preserving the triviality of the normal
bundle, and we obtain a smooth, stably almost complex manifold
with conjugation. The fixed point set of the conjugation is Ft U F2.

Choose a neighborhood N' of Ft in V, equivariantly diffeomorphic
to the tangent bundle of Fx. Similarly choose a neighborhood N of
Fx in Mx. Define a diffeomorphism from N\FX —> N'\Fλ by sending
(x,v)'-*(x,—v/\\v\\2), where v is a tangent vector at x. This is
smooth, and preserves the almost complex structure along the unit
sphere bundle. Form a smooth manifold M2 from Vf\F1 U M\FX by
identifying the above submanifolds. There are almost complex struc-
tures on Vf\Nl and M\Nlf where Nl and N2 are the vectors of
length ^ 1. These agree on sphere bundles, and hence M2 has a
stable almost complex structure, provided we add to zy a trivial
complex line bundle. The involution on Mί\F1 is free and hence the
fixed point set is F2. This completes the proof of Theorem 1.

3. Conjugations on S2q+1 x S2q+\ In [1], Calabi and Eckmann
have described almost complex structures on S2q+1 x S2q+1. In this
section we will describe a conjugation having fixed point set S2q+ι.
We begin with a description of the principal bundles involved.

Let {UJozizg be the standard open covering of Pq(C) by co-
ordinate neighborhoods. Then {Ut x Ua}0^i>a^q is an open covering
of Pq(C) x P\C) by coordinate neighborhoods. Let Uιa = Ut x Ua.
As in [4, Gh. 9], define a principal bundle B over Pq(C) x P9(C)
with group G = S1 x S1 and transition functions Ψίa,jβ- UiaΠ Ujβ—>G
given by

j \zt\ wβ\wa

Note that Z = (z0, ••-, zq), W = {w0, ••-, wq), and Zz S25+1, We S23+1.
Then Ψta,j?Ψίβ kr = Wta.tr. Now let Bia = Uia x G and define fia: Bia-+
Bai by Tia{[Z], [W], X, μ) = ([W], [Z], μ, λ).

LEMMA 5. The map T: B-+B defined by T\B.a = Tia is a well-
defined involution covering T([Z], [W]) = ([W], [Z]).
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Proof. We need to show that the diagram

T

I f i
15 > J3

in which the vertical maps are the identifications defined on the
appropriate intersections, is commutative. We have

, [W], λ, μ) = ([w], [Z], ^ i ^ i l j
V wβ\wa\

- TjβΨiaJβ([Z],[W],X,μ)

and so the diagram commutes. The remainder of the lemma is clear.
Note the use of the symbol WiaJβ to denote the map Bia —* βja defined
on the appropriate intersection.

Define a map hia: Bίa~» S2q+1 x S2q+1 by

h<a([Z], [W], λ, μ) =

Then hjβΨia,jβ = Λ<α so that there is a well-defined diffeomorphism
h:B-+S2q+1 x S2ff+1.

LEMMA 6. ΓAe involution

hΐh-1: S2q+1 x S2 g + 1 > S2q+ί x S 2 ί + ι

is given by (Z, W)->(W, Z).

Proof. We have

hatfta([Z], [W], λ, μ) =

and the lemma follows.
Again following [4], consider the principal bundle B' over

P\C) x P\C) with group G' = C/D where D is the subgroup of C
generated by the complex numbers {1, i). Define transition functions
Ψia.iβ: UiaΠ Uύβ^G' by

Wiajβ([Z], [W\) = -£fo* I ̂  I + < log I w. I) + ̂ ( l o g i + i log ^ )

+ —-;(log I sy I + i log I wβ I) .
2π^
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We wish to define a bundle equivalence f: B-+ B'. First define an
isomorphism g: G-+G' by

Q(\ μ) = ( Γ T log λ) + i ( - ί τ log μ) .

It follows that gΨia jβ = Ψ'ia, jβ: Uia Π Ujβ —> (?', and hence that / can
be defined by defining fia = 1 x #: Bia —> ^ α . There is an induced
involution T * = (1 x g)Tia(l x fir"1)- B'ia-*B'ai given by

and an involution TΊ B' —• 5 ' . Here [v] denotes the class in G' of
the complex number v.

LEMMA 6. Tf is a conjugation of the complex manifold B'.

Proof. In local coordinates, T' is given by Γ'([Z], [W], [v]) =
([ΐF], [Z], [iv]). We need only verify that the map [v] —• [ΐϊf] is a
conjugation of the complex manifold Gf = C/i). Since this map sends
[iv] to [( — ί)ίv], the lemma follows.

THEOREM 2. S2<7+1 is ίλe fixed point set of a conjugation S2q+1 x

Proof. The diffeomorphisms /: (B, T)-+(Bf, Tf) and h: (B, T)->
(S2q+ι x S2q+\ T) are equivariant with respect to the given involu-
tions, and commute with the projections onto Pq(C) x Pq{C). Note
that T is defined by T(Z, W) = (W, Z). Then theorem follows since
the fixed point set of T is diffeomorphic to S2q+ι.
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