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In this paper, a global version of the Frobenius reci-
procity theorem is established for irreducible square-inte-
grable representations of locally compact unimodiilar groups.
As in the classical compact case, it asserts that certain inter-
twining spaces are canonically and isometrically isomorphic.
The proof is elementary, and the appropriate isomorphism is
exhibited explicitely. The essential point is that square-
integrability implies the continuity of functions in certain
subspaces of L2 spaces on which the group acts and leads to
a characterization of the subspaces in terms of reproducing
kernels.

The preliminary results on reproducing kernels are contained in
Theorems 1 and 2 in § 2. Our main result on reciprocity, Theorem
3 in § 3, does not require direct integral decomposition theory as in
\2] and [4] and is formally similar to the version of the reciprocity
theorem proved by C. C. Moore in [5]; however, we only consider
unitary representations, and do not need to formulate the result in
terms of summable induced representations on ZΛspaces.

After this paper was initially submitted, we learned that A.
Wawrzyήczyk [6] had already proved a result, similar but not identi-
cal to our Theorem 3. His proof is based on a general duality
theorem for automorphic forms due to K. and L. Maurin [3], and
he does not prove results corresponding to our Theorems 1 and 2.

Let G be a locally compact unimodular group and S a continuous
irreducible square-integrable unitary representation of G on a com-
plex Hubert space Sίfi We recall that this implies

x - > (S(x)φ \f),xeG

is square-integrable on G for all φ and ψ in £ίf and the existence
of a positive constant d (the formal degree) such that

(1.1) f (S(x)φ\ a) (S(x)ψ I β)dx = dr\φ \ Ψ){aY0)
JG

for all φ, a, ψ, β in Sίf.
Let K be a compact subgroup of G and λ a continuous irreduci-

ble unitary representation of K on a complex-Hilbert space 3Γ. Let
T= T( ,λ) be the continuous unitary representation of G induced
by λ. By definition, T(y)(yeG) is right translation by y on the
space L2(G, λ) of all square-integrable maps /: G —> SίΓ such that
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(1.2) f(kx) = λ(fc)/(α?)

for all (k, x) in K x G.
Now let *J^(S, T) denote the Banach space of bounded linear

maps U: £%f —> L\G, λ) which intertwine S and T, i.e., are such that

(1.3) US(x) = T(x)U

for all x in G. Similarly, let ^{SKf λ) denote the space of operators
intertwining Sκ (the restriction of S to K) and λ.

In § 2, we obtain certain properties of the spaces TJί^tf) for U
in ^(S, T), and using these properties, we then show in § 3 that
there is a canonical isometric isomorphism of J^{βKi λ) onto ^{S, T).
From this we conclude that T contains S (discretely) exactly as
many times as Sκ contains λ.

2. The spaces U(β^), Ue^(S, T). Because S is irreducible,
it is easy to see that each U in ^{β, T) is a scalar multiple of an
isometry (cf. the argument proving (3.3)). Hence, U(<§έf) is a closed
subspace (possibly 0) of L\G, λ). Less obvious and much more im-
portant is the fact that each function class Uφ(Ue ^(S, T), φeβ^)
contains a unique continuous function.

THEOREM 1. Let U be any operator intertwining S and T.
Then U{£έf) is a closed subspace of L\Gf λ) consisting of continuous

functions in which point evaluations

f-*f(x) , fe

are continuous linear maps of U{^f) into JX~ for every x in G.

Proof. Let φ e £ίf and / any function in the class Uφ. Set

e(y) = d ( φ I S(y)φ) , y e G .

Then, because G is unimodular and in view of (1.1), it follows that

I e(y) [ \\f(xy) \\ dy £ ( ^ | e(y) |2 dyj'2^ \\f(xy) ||2

Thus, we can define a bounded function g:G—*J%* which satisfies
(1.2) by setting

(2.1) g(x) - ( e(y)f(xy)dy .
JG

Moreover, g is continuous. For
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| | g{x) - g{zx) \\^\\ e(y) | \\f(xy) - f(zxy) | | dy
JG

^ ώ1/ι II 9> IIs ( J β 11/(2/) -f(zy) ||2 # J / 2 - > 0 as

Now let ft be any function with compact support in L\G, λ).
Then

(g(x)\h(x))dx

= \ (\ e(y)f(xy)dy\h(x))dx=\ dx\ e(y)(f(xy) | h(x))dy
JG \JG / JG JG

= \ dy\ e(y)(f(xy) | h(x))dx = \ e(y)(T(y)f | Λ)dy

= ί e(y)(US(y)φ\h)dy (by (1.3))

- (9 I 9){U*h\φ) (by (1.1))

Since this holds for all such h, it follows that

(2.2) ί7(£)HMI 2/(a0, a.e. .

Because the complement of a set of Haar measure 0 is dense, it
follows that each function class Uφ contains a unique continuous
function; from now on that function will be denoted by Uφ.

Suppose φ Φ 0. Then from (2.1), (2.2) and the computations
above, we have

(2.3) (Uφ){x) = - ^ j β (Uφ)(xy)(S(y)φ I φ)dy

and

(2.4)

for every x in G. Therefore, point evaluations are continuous.
Now suppose Ό{^f) Φ 0. Then, since the maps

Ex:f-+f(x), feU(^), xeG

are all continuous, U{£έf) is completely determined by the positive
definite kernel

(2.5) Q(x, y) = EXE?

in the simple fashion described in [1]. On the other hand, it is easy
to see directly that Q(x, y) = Pixy'1) where
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(2.6) P(x) = EίT(x)E* , xeG

and that following result is valid.

THEOREM 2. The operator-valued function P is continuous and
square-integrable on G. It has formal properties

(1) P(xY = P(χ->)
(2) P{xy-*) = E,Eϊ
( 3) PikyXk,) = \{kι)P(x)X{k2)

(4) P(x) = \ P{&-ι)PWy
JG

which are valid for all klf k2 in K and x, y in G. Moreover, left
convolution by P is the orthogonal projection of L2(G, λ) on U{3ίf)\
in particular

(5) f(x)= \ P(xy-1)f(y)dy
JG

for all f in U(J%f) and x in G.

Proof. Equation (1) follows from (2.6); (2) and (3) are conse-
quences of the relations Ex = EλT(x){x e G) and EλT{k) = λifyE^k e K).
If a and β are vectors in J?Γ, then

(P(oήa I β) = (T(x)E1*a \ E*β)

and since T is equivalent to S in U{£ίf), it follows that x —> (P(x)a \ β)
is not only continuous but square-integrable on G. We also have

(P(x)a [ β) = {Era \ T(χ-*)E?β)

= ( (E?a(y) I T{χ-')E?β{y))dy
JG

= \ (EvE*a\EyT(x'1)E*β)dy
J G

= \ (P(y)a I P(yx-^)dy (by (2))
JG

= \ (P(xy-ι)P(y)a | β)dy (by (1))
JG

for all a, β in JίΓ\ hence, (4) is true.
Now suppose fe L2(G, λ). Then for any x in G and a in jsf

(f I T{χ-*)E?a) = \ (f(y) I {T{x^)E?a){y))dy
JG

= \

= (f(y) \ P{yv-ι)a)dy = {P{xy-ι)f{y) \ a)dy .
JG JG
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If / is orthogonal to U{Sίf\ then (/1 T(x~ι)E?a) = 0 for all x and a;

hence

\σ(P(*nrι)f(v)\*)dy = o

for all x and a. Therefore

(2.7) \ P(xy-1)f(y)dy = 0 , fe U{^fY .
JG

On the other hand, if / e U{<%?), then

so that

{f{x) \a)=\ {P{xy-ι)f{y) \ a)dy
JG

for all x and a; hence, (5) is valid. To complete the proof it is
enough to observe that (5) and (2.7) imply that for any / in L\G, λ),
the function

g(x)= \
JG

xeG

is the orthogonal projection of / on

3. The reciprocity theorem. In the statement of the next
result, which is our version of the Frobenius reciprocity theorem for
square-integrable representations, we retain the assumptions and
notation used in §§ 1 and 2.

THEOREM 3. The intertwining spaces ^{SKf λ) and J?{S, T)
are canonically isomorphic via an isometric linear map

that is defined by the equation

(3.1) (UAφ){x) = cAS(x)φ , φ G <ST, X G G

in which c = (d/dim {ST))ιι\

Proof. Let A e <J^(SK, λ), φ e 2ίf, and define / on G by

f(x) = AS(x)φ, xeG .

Then / is continuous, and

f(kx) = AS(k)S(x)φ - X(k)AS(x)φ = \(k)f(x)
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for all (k, x) in K x G. If a e _$r then

(f(x) I a) = (ASf(a?)?> | α) = (S(x)φ \ A*a) .

Since S is square-integrable, it follows that x —>(f(x) \ cc) is square-
integrable for each a in ST. Hence, since 3ίΓ is necessarily finite
dimensional

\\\f{x)\fdx< oo .

It follows that (3.1) defines an element UAφ in L2(G, λ), and
φ —> UAφ{φ e £%f) is a linear map UA of 3$f into L2(G, λ).

Now suppose A and B lie in ^(SK9X), let 6lf •• , s n be an
orthonormal base for J>Γ, and let ̂  and ψ be vectors in £{f. Then

(3.2) ( t ^ φ I UA) = d~\φ I ψ) ± (B^ε, \ A*ε,) .

In fact

( (AS(x)φ I BS(x)ir)dx = Σ ί (S(*)9> I A*εJ(S(x)f | β ε,)^
JG i JG

= dr\φ I Ψ) Σ (5*6,1 A*ε4) (by (1.1)) .

Because S and λ are unitary representations and AS(k) = X(k)A, it
follows that

AA*X(k) = X(k)AA*

for all k e if. Since λ is irreducible this implies AA* = \\ A ||2J. Hence

(A*«|A*£) = || A |

for all a, β in ̂ TΓ Using this and setting B = A in (3.2), we find
that

(3.3) {UAφ\UA)=\\A\Ϋ(φ\ir)

for all φ, ψ in Jg^ Therefore, UA is a continuous linear map of
into L\G, λ), and || C7 |̂| = \\A\\.

Next note that for φ in Jg^ and x, y in G

(T(y)UΛφ)(x) = (UAφ)(xy) = cAS(x)S{y)φ = (UAS(y)φ)(x) .

Hence, T(y)UA = UAS(y) for all y in G. Therefore, UAe^(S, T).
Since

U.Λ+3 = cUΛ+ UB

it follows that A—+UA is an isometric linear map of J^{SK, T) into
, T).
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Now suppose Ue^iS, T). Then by Theorem 1, we can define
a continuous linear map A of £tf into JίΓ by setting

(3.4) Aφ = c

Then for k in K and 9? in

AS(k)φ = C-\US{k)φ){l) = C-\T{k)Uφ){l) = C~\Uφ){k) = \{k)Aφ .

Thus A e J?(βκ, λ), and

UΛφ(x) = θAS(x)φ = (US(x)φ)(l) = (T(x)Uφ)(l) = (Uφ)(x)

for φ in <^T and x in G. Hence, U= UA and A — £7̂  (A e ^ ( S x , λ))
is an isometric linear map of ^{SKj X) onto ^(S, T).

COROLLARY. The multiplicity of S in T is exactly the same as
the multiplicity of λ in Sκ.

Proof. These multiplicities are just dim J^(β, T) and dim
<-^(SK, λ), respectively.
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