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L. E. Ward, Jr. characterized a generalized tree as a
compact Hausdorff space which admits a partial order satisfying
certain conditions. An analogous characterization of smooth
continua, in terms of quasi ordered topological spaces, is
obtained.

A quasi order on a topological space X is a reflexive and tran-
sitive binary relation rg. If this relation is also antisymmetric it
is called a partial order. The quasi order ^ is closed if {(x, y)e X x
XI x ^ y} is a closed subset of the product space X x X.

For each xe X, the set L(x) = {y e X | y ^ x) (respectively,
M{x) = {y 6 XI x ^ y}) is called the set of predecessors (respectively,
successors) of x. Let E(x) = L(x) Π M(x) and note that ^ is a partial
order if and only if each E{x) is a singleton. In case ^ is closed,
the sets L(x), M(x), and E(x) are closed subsets of X.

If x ^ y and x £ E(y) we write x < y. The quasi order ^ is order
dense if whenever x < y, there exists ze X such that x < z < y.

Let S be a subset of X. An element z e S is a zero of S if 2 ^ #
for each xeS. If x ^ y or y ^ x for all x, y e S, then S is called a

We define the equivalence relation p on X by

(x, y)e p if and only if E(x) =

Let ^: X—>X\p denote the natural quotient map.
A continuum (— compact connected Hausdorff space) X is heredi-

tarily unicoherent at the point p [2] if for each x e X, there exists
a unique subcontinuum of X, denoted [p, x], irreducible between p
and x. We say X is hereditarily unicoherent if it is hereditarily
unicoherent at each of its points.

If the continuum X is hereditarily unicoherent at p then X admits
a very natural quasi order ^*p, called the weak cut point order with
respect to p:

x ^P y if and only if x e [p, y] .

Note that for each xe X, L(x) = [p, x].
The continuum X is smooth if there exists a point peX such

that X is hereditarily unicoherent at p and the quasi order ^p is
closed. By [1], Theorem 3.1, p. 65, this definition is equivalent to
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Gordh's original definition [2]. To emphasize the point p we will
often write "X is smooth at p". A generalized tree is a hereditarily
unicoherent, arc wise connected1 smooth continuum. Ward's original
definition [6] is stated here as Theorem 1. According to [4] the
definitions are equivalent.

THEOREM 1. The compact Hausdorff space X is a generalized
tree if and only if X admits a partial order ^ such that

(1) ^ is closed;
( 2) rg is order dense;
(3) if x, y e X, then L(x) Π L(y) is a nonempty chain;
(4) if Y is a closed and connected subset of X, then Y contains

a zero.

It follows that <£ is the weak cut point order with respect to
p where {p} = f| {L(x) \ x e X) and L(x) = [p, x].

It is the purpose of this paper to establish an analogous character-
ization for smooth continua.

Consider the following properties that a quasi order ^ on a space
X may possess:

( i ) <; is closed;
(ii) ^ is order dense;
(iii) there exists pef] {L(x) \ x e X) and each L(x) is a chain;
(iv) if 7 is a closed connected subset of X, then Y contains a

zero;
(v) E{x) is connected for each x e X;
(vi) if Y is a closed connected subset of X and pe Y, then

E(y) S Y for each y e Y.

THEOREM 2. Let X be a compact Hausdorff space which admits
a quasi order ^ satisfying (i)-(vi). Then X is a continuum which
is smooth at p.

The theorem will be proved via a series of lemmas. Unless other-
wise stated assume X, ^ , and p are as above. Observe that (vi)
implies p is the unique zero of X.

LEMMA 1. The space X/p is compact Hausdorff and the map
φ'.X-+Xjp is monotone.

Proof. First note that {E(x) \ x e X) is a pairwise disjoint closed
covering of X. From Theorem 2, [7], p. 147, and [3], p. 132, we
infer {E(x) | x e X) is an upper semicontinuous decomposition of X.

1 An arc is a continuum (not necessarily metrizable) with exactly two noncut points.
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By Theorem 3-33, [3], p. 133, X/p is compact Hausdorff. Finally, it
follows from (i) and (v) that φ~\φ{x)) = E(x) is closed and connected;
hence φ: X-+ Xfp is monotone.

The quasi order fg on X induces a relation ^ ' on X/p defined by

φ(x) < '̂ φ(y) if and only if x ^ y .

For the sake of clarity let L'{φ{x)) denote the set of predecessors of
φ(x) i

LEMMA 2. The space X/p is a generalized tree which is smooth
at φ(p). Moreover, ^ ' is the weak cut point order with respect to
φ(p) and L'(φ{x)) is the unique subcontinuum of X/p irreducible between
φ(p) and φ{x).

Proof. It is straightforward to verify that <;' is a partial order
satisfying the hypotheses of Theorem 1.

LEMMA 3. The space X is a continuum. In particular, L(x) is
closed and connected for each x e X.

Proof. Since L(x) is the inverse image of L'(Φ(x)) § X/p under
the monotone map φ: X—>X/p it follows from Theorem 9, [5], p. 131,
that L{x) is closed and connected. Since p e Π {L(x) | x e X) and
X = U {L(x) I x e X}, the lemma is proved.

LEMMA 4. If Y is a subcontinuum of X and peY, then
Φ~\Φ{Y)) - Y.

Proof. We show only φ~\φ{Y)) g Γ . If z e φ-\φ(Y)) there exists
yeY such that φ(y) = φ(z). By (vi)

z e E(z) = E(y) S Y .

LEMMA 5. The continuum X is hereditarily unicoherent at p.

Proof. Let x be a fixed, but arbitrary, point in Xand let F g l
be a subcontinuum irreducible between p and x. Then φ(Y)QX/p
is a subcontinuum containing φ(p) and φ(x). Since X/p is a generalized
tree, L\φ{x)) ̂  φ(Y). It follows from

and Lemma 3 that L(x) = Y. That is, L(x) is the unique subcon-
tinuum of X irreducible between p and x.

We have shown that the space X is a continuum which is here-
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ditarily unicoherent at p. Moreover, [p, x] = L(x) for each xe X.
It follows immediately that g is the weak cut point order with respect
to p. Since <Z is closed by hypothesis, the proof of Theorem 2 is
complete.

The converse of Theorem 2 is also true. Before proceeding,
however, we need a few results about smooth continua. The reader
is referred to [2] for the details.

THEOREM 3. If the continuum X is smooth at p then X/p is a
generalized tree which is smooth at φ(p), the map ψ:X—>X/p is
monotone, and intx E(x) — Q.2

LEMMA 6. If the continuum X is smooth at p then x ^ py
(respectively, x <Py) if and only if φ(x) ̂ φ(P)φ(y) (respectively, φ(x) <φ{P)

φ(y)). Moreover, if Y is a subcontinuum of X and pe Y, then
Φ~\Φ(Y)) = Y.

THEOREM 4. If the continuum X is smooth at p then ^p satisfies
(i)-(vi).

Proof. It is immediate that (i) and (vi) hold. Since E(x) is the
inverse image of the point φ(x) under the monotone map φ: X—*X/p,
(v) holds. Conditions (ii) and (iii) follow from Lemma 6 and the fact
that L(x) = φ~1(V(φ(x)). Finally to show (iv) holds, let 7 be a
subcontinuum of X. Then φ(Y) is a subcontinuum of the generalized
tree X/p. Let zeXbe such that φ(z) is a zero of Φ(Y). Choose any

y e φ~ι(φ(z)) n Y - E(z) n Y .

It follows from Lemma 6 that y is a zero of Y.
Observe that condition (iii) is equivalent to condition (3) of Ward's

theorem. The paraphrase was inserted as a matter of convenience,
since the point p appears in condition (vi).

We remark that each of conditions (i)-(vi) is independent of the
remaining five. We include here examples to clarify the necessity of
the last two conditions. The omitted details are left to the reader.
Let ^o denote the natural partial order on the real numbers.

EXAMPLE 1. (Due to J. Ladwig.) Let X denote the Cantor Set
and let {(an, bn) \ n = 1, 2, •} be the collection of "deleted intervals";
i.e.,

X = [0, 1] - U (an, bn)

2 " intx" denotes interior in the space X and " • " denotes the empty set.
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and for n = 1, 2,

[ant b J n X = {an, bn) .

Define x ^ y if and only if as ̂ oy or a? and ?/ are endpoints of a
common deleted interval. The quasi order ^ on I satisfies (i)-(iv)
and (vi) but not (v).

EXAMPLE 2. In the plane let X be the triangle with vertices
p = (0, 0), (1, 0), and (1, 1). Define (x, y) ^ (u, v) if and only if x ^Qu.
Then ^ on X satisfies (i)-(v) but not (vi); e.g., take Y= [0,1] x {0}.

COROLLARY 1. Let X be a continuum which is smooth at p. Then
^p is a partial order if and only if X is a generalized tree which
is smooth at p.

Proof. If ^ p is a partial order then each E(x) is degenerate
and conditions (i)-(vi) reduce to (l)-(4) of Theorem 1. The converse
is trivial since each L(x) is an arc for each xe X.

It is necessary that the continuum X in Corollary 1 be smooth at
p as the example below shows.

EXAMPLE 3. In the plane let

A = \(x, sin— ) | 0 < x ^ l i ,
x.

£ = { 0 } x [ -1 ,1 ] ,
C = [ - l f 0 ] x {-1}.

The continuum X = A ( J . B U C is clearly not a generalized tree.
However, X is hereditarily unicoherent and gj, is a partial order for
p = ( - l , l ) .

Finally observe that in the presence of conditions (i) and (iii)-(vi),
condition (ii) is equivalent to

(ii') intLU) E(x) = • for each xeX- {p} .

For if X is smooth at p then so is L(x); thus (ii') is a consequence
of Theorem 3. Conversely, we show (i), (ii')> and (iii) imply (ii).
Suppose x, ye X are such that x < y and x < z < y for no ze X.
Then L(y) — L(x) is a nonempty open (in L{y)) subset of E{y)9

contradicting (ii').
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