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J. C. Stampfli has asked whether the norm of the deriva-
tion OΓ: A-* TA — AT as a mapping of the subalgebra % of
%(H) into S3(#) is given by inf{21| T- A'\\: Ar e %'}. That this
need not be the case is shown through an example in 4 X 4
matrices.

if is a Hubert space. 33(iϊ) is the algebra of all bounded linear
operators on H. SI is a subalgebra of 33(ίf) and 21' is the commutant
of 21.

In [6], J. C. Stampfli proved that the norm of £ίτ as a mapping
of 33(iϊ) into itself is precisely 2 inΐλ\\T — X\\. Thus the question
about \\&T\\ as a mapping from SI to S5(iί) naturally arises. In
addition, Kadison, Lance, and Ringrose [2, Theorem 3.1] show that if
T = T* and DΓ maps §1 into itself, then 11OΓ11 = inf{211T - A'\\: A' e 21'}.
Our example will have T self-adjoint, which shows that their hy-
pothesis QΓ(SI) c 31 is not inessential.

For our example, we take H to be complex four-dimensional
Hubert spaces; elements of H are to be thought of as column 4-
vectors, and elements of 33(iJ) as 4 x 4 matrices. We take SI to be
the subalgebra of diagonal matrices, so SI' = St.

For T we take the Hermitian matrix

1 - 4 - J L ( - 5 + 6ΪVΊF) _JL(-5-6i l/y)

- 4 4 -2l/Ϊ4 -2T/Ϊ4

12 --!=(-5-60/ΊΓ) - 2 V Ή — — (
1/14 2 14

-^L=(-5 + 6iVS) -2T/Ϊ4 — (-95-12ΪT/T) —
1/14 14 2

JΓ is of the form P — Q where P and Q are self-ad joint projections.
The range of P is two-dimensional and is spanned by the orthogonal
unit vectors

=
 S T T ^ -1" iVΎ

the range of Q is one-dimensional and is spanned by the unit vector
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Q =

First we show that | |Q Γ | | = sup{|| TX- XT\\: Xe% \\X\\ = 1} < 2.
As the unit sphere of 2C is the convex hull of the unitary matrices
in 2t, it suffices to consider || TX — XT\\ only for diagonal unitary
matrices X. As T has norm 1 and any X has norm 1, || TX — XT\\ ^ 2.
Suppose then that there were an X for which || TX— XT\\ = 2 (since
the set of X under consideration is compact, the supremum defining
£ιτ is attained). Then there must be a unit vector ueH for which
||(TX - XT)u\\ = 2, and since TX and XT are both of norm 1, we
must have || TXu\\ = 1 = ||.XTi&||; and since the norm of H is strictly
convex, we must have TXu = —XTu. Further, since \\Tu\\ = 1, we
must have u = Pu + Q%. The next two relations are consequences
of TXu — —XTu; start in the middle and work towards either end.

PXPu + PXQu = PX(P + Q)u = PXu

= P(P - Q)Xu = PΓJϊfo = -PXTu

= -PXPuΛ- PXQu ,

so PXPu = 0;

-QXPu - QXQu = -QXu

= QTXu= -QXTu

= -QXPu + QXQu

so QXQu = 0.

Next we observe that XPu is in the range of Q and XQu is in
the range of P; for if one of these were not the case, we should
have the strict inequality below:

1 = (Ml2 = \\Qu\\* + HP^II2 = \\XQu\\* +

> | | P X « 2 + ||QXP^||2

- ||PX(P + Q)^||2 + \\QX(P

But if | |Q Γ | | is to be 2, we cannot allow \\TXu\\ < 1.
Since | |XP^| | 2 + ||XQ^||2 = 1, not both of XPu and XQu may be

zero. Observe that operation on a vector by the diagonal unitary X
does not change the absolute value of any component. If XPu Φ 0,
then XPu is in the range of Q and the conclusion we draw is that
there must be a nonzero vector in the range of p with moduli of
components the same as that of q. If XPu = 0, then XQu Φ 0 and
XQu is in the range of P; we draw the same conclusion.
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To finally reach the desired contradiction to the assumption
||£}Γ | | = 2, we need only show that no vector in the range of p has
components of the same modulus as q. Indeed, if there were, such
a vector must be of the form p = eίi9(cos Θp{1) + eiΦ sin Θpi2)) for some
real β, Θ, Φ. Equating the squares of the moduli of the first two
components yields

1 = I cos Θ + eiΦ sin Θ |2 = 1 + 2 cos Θ sin Θ cos Φ ,

4 = |cosβ(- l + iVΎ) + e < # s in0(-l - iVΎ)\2

= 4 + 8 cos Θ sin Θ cos(φ + —λ .

Thus cos ©sin© = 0 and p must be a multiple of p{l) or p{2); but
neither of these has the moduli of their last two components the
same as q.

Having demonstrated that ||£}Γ||<2, we show now that ||Γ— A'||Ξ>1
for every A'eSΓ. As | |Γ | | = 1, this is equivalent to showing that
II T — D\\ ̂  1 for every diagonal matrix D. Suppose, then, that there
were a diagonal matrix D-with diagonal entries dl9 d2, d3, ώ4—for which
|| Γ - D | | < 1 . We may assume D real, since || T-ReD\\ = \\Re(T-D)\\^
II T - D\\ < 1, where by Re A we mean 1/2(A + A*).

Let p be any unit vector in the range of p, and q as before.
Consider the inner product

((Γ - D)(cos Gp + eiφ sin θq\ (cos θp - eiΦ sin θq)) .

This is equal to

1 - (Z)(cos θp + eiφ sin θq), (cos Θp - eiΦ sin θq)) ,

but has absolute value less than 1. Hence

Re(D(cos θp + eiφ sin θq), (cos Θp - eiΦ sin θq)) > 0 ,

for any choice of p, θ, and Φ. The choices θ = 0, p = p(1), and p = p(2)

give

Δ

and hence

i + U2 + -^-d3 + -jd^j > 0

x + Ad2 + -ίd8 + ljUλ > 0

-^d3 + ^rdλ > 0
Δ Δ

But the choice 0 = ττ/2 gives
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-id, + U2 + — d3 + 3-dλ > 0 .
\ 2ι Δ J

This incompatibility is a contradiction to || T — D\\ < 1.
The reader will observe the similarity with Example 5.5 of [3].

In spirit, we have the logarithmic analogue of the problem of con-
ditioning matrices. One can ascertain conditions that || T — Ar\\ ^ || Γ| |
for all A'elY by consideration of the norms || T\\p = [traceCT*?7)^2]1^
as p—> co, as in [4, Lemma 4.7, Theorem 4.8] or, more generally, [5,
§ 6]. For T self-ad joint, the relevant condition to have \\T-Ar\\^\\T\\
for all diagonal A! is that both numbers — | | 2Ί | and | | Γ | | are eigen-
values of T and that the spectral projections associated with these
eigenvalues have proportional diagonals. Conditions involving su-
prema of norms over the group of diagonal unitaries are related to
the moduli of components of certain vectors; see [4, Theorem 5.4],
as well as [1, 2]. Finally, we note that for the analogous problem
of conditioning matrices, examples such as we have constructed are
not available in 3 x 3 matrices, nor with 4 x 4 real matrices.
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