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Elementary surgery along a knot has been used in an
attempt to construct a counterexample to the Poincarέ
Conjecture. Certain classes of knots have been examined,
but no counterexample has yet been found. Another, and
perhaps as interesting a question, is whether S2 X S1 can be
obtained by elementary surgery along a knot. In this paper
the question is answered in the negative for knots with
nontrivial Alexander polynomial, for composite knots, and for
a large class of knots with trivial Alexander polynomial—the
simply doubled knots.

By a knot we will mean a polygonal simple closed curve in the
3-sphere S3. A solid torus T is a 3-manif old homeomorphic to S1 x D2.
The boundary of T is a torus, a 2-manifold homeomorphic to S1 x S1.
A meridian of T is a simple closed curve on Bd T which bounds a
disk in T but is not homologous to zero on Bd T. A meridianal disk
of T is a disk D in T such that D Π Bd T = Bd D, and Bd D is a
meridian of T. A longitude of T is a simple closed curve on Bd T
which is transverse to a meridian of T and is null-homologous in
S3 - T.

The basic construction, elementary surgery along a knot, is now
described: Let N be a regular neighborhood of a knot K, m an
oriented meridianal curve on Bd N, and I an oriented curve on Bd N
which is transverse to m and bounds an orientable surface in Ss — N.
Let T be a solid torus and let h: T—+N be a homeomorphism. Then
Sz is homeomorphic to S* ~ N \JhlBdΓ T. Now let hλ: Bd T-+BάN be
a homeomorphism with the property that Ar1-/ :̂ Bd T—> Bd T does not
extend to a homeomorphism of T onto T. Let ikF = S* - N U Al Γ,
then we say that M3 is obtained from S3 by performing an elementary
surgery along K.

Consider now the fundamental group of the complement of the
knot TΓ̂ AS3 — N) with base point mil/, where m and I are considered
as elements of πx(S3 — N) = G. Then the coset m = mGf generates
the commutator quotient group GjGf — HX{S* — N), and the longitude
I is in the second commutator subgroup G". The fundamental group
of Mz is obtained by adjoining the relation lp = mq to πi(Sz — N)
where pi — qm is the image under hx of the boundary of a meridianal
disk of T, p and q are relatively prime, and p > 0. The first homology
group of Mz is generated by m with the relation mq = 1.
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Thus if M3 is homeomorphic to S2 x S\ then πx(M3) ~ H^M3) ~ Z.
Hence, q — 0 and p = 1; that is, a longitudinal surgery is performed
in which the image of the boundary of a meridianal disk is a longitude.
It should be noted that a longitudinal surgery along a trivial knot
does yield S2 x S1. In the following theorem we give a necessary
condition that a surgered manifold be homeomorphic to S2 x SK

THEOREM 1. If a manifold homeomorphic to S2 x S1 results
from elementary surgery along a knot K, then the Alexander poly-
nomial of K is trivial.

Proof. If a surgered manifold M3 is homeomorphic to S2 x S1, then
a longitudinal surgery must have been performed. The fundamental
group of M3 is obtained by adding the relation I = 1 to πλ(S3 —N) = G.
In other words, πx(M3) is the quotient group of G by the normal
closure of the subgroup generated by I; denote this subgroup by (l)c.
Now since I e G" and G" is a characteristic subgroup of G', it follows
that (If ^ G" ^ G'. Thus if G" is a proper subgroup of G', then
π^M3) Φ Z and M3 is not homeomorphic to S2 x S1. But G" is a
proper subgroup of G' if and only if the Alexander polynomial of K
is nontrivial [1]. This establishes Theorem 1.

So now we consider a large class of nontrivial knots with trivial
Alexander polynomial—the simply doubled knots. A simply doubled
knot or a doubled knot without twists is defined as follows: Let TQ

be a standardly embedded solid torus in S3 with meridian mQ and
longitude l0. Let J be a self-linking simple closed curve in To (as
shown in Figure 1 for the trefoil) and let ΐ\ be a regular neighborhood
of J in To with meridian mx and longitude Zlβ Let if be a nontrivial
knot in S3, iV(-SΓ) a regular neighborhood of i£ with meridian m and
longitude I which bounds an orientable surface in Ss — N(K). Let
/: Γo —• N(K) be a homeomorphism with the property that /(m0) = m
and /(Zo) = ϊ, then we say that K is simply doubled to obtain f(J).

FIGURE 1.
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The doubled knot /(/) we will denote by dK.
Consider now the fundamental group of TQ — Tι with base point

m0 n k; let G, = πx{T, - ϊ\) and let G(K) = π^S* - N(K)). By van
Kampen's theorem, the group of the double of K, G(dK) =
Tr̂ iS3 — N(dK)), is the free product with amalgamation G{KyGι with
the identification of subgroups (I, m) of G{K) and (Zo, w0) of Gj. de-
termined by I = Zo and m — m0. Furthermore, Gx is generated by Zo

and m1 subject to the relation [Zo, m0] = 1 where [x, y] — xyx~λy~\
m0 = [lϊ1, mJPί"1, ^Γ 1], and lx = [mr1, ZJimr1, Zϊ*1]- See [2].

THEOREM 2. Elementary surgery along a doubled knot does not
yield S2 x S1.

Proof. Perform a longitudinal surgery along dK by replacing
the regular neighborhood /(ϊ\) of dK by a solid torus T2 to obtain
Λf3 - S 8 - / ( Γ 1 ) U A Γ2 where fc: Bd ϊ W B d / ί Γ O is a homeomorphism
which takes a meridian of T2 to the longitude f(l^) of

CjrJ}

ΊΊ£>

" = N(dK)

FIGURE 2.

Now instead of first replacing N{K) by To and then replacing
N(dK) =f(T1) by Γ2, first replace 2\ by T2 and then replace N(K)
by Γo. Then by van Kampen's theorem, the fundamental group of
Mz is the free product with amalgamation G(K)*G2 with the identifi-
cation of subgroups (I, m) of G{K) and (Zo, m0) of G2 where G2 is obtained
from G1 by adding the relation lγ = 1. The group G2 has the following
presentation: G2 = (Zo, mx | [Zo, ̂ o] = 1, m o = [ί̂ "1, m j [Z^1, mr1]. Zx =
[^Γ1, ZolI^Γ1, Ẑ "1] = 1). If we add the relation mj,o — l^1mι to G2, then
mr 1^ = l^mΐ1, and it follows that m0 = l^ιm1Umτ%ιmτιUm1 - l^ and
Zi = mTXm^mTH^m^o = 1. Thus the relations [Zo, m0] = 1 and lx = 1
are consequences of the relation mJo — Z^^!, and the group G2 =
(Jo, ^ i I wUo = I^"1^) is a quotient group of G2. Now the properties of
G2 are well-known: G2 is torsion-free and To Φ 1. Hence, m0 = K* Φ 1
in G2, mQΦ 1 in G2, and m^Φ 1 in ^(M 3 ) . But m0 = [l~\ mJfZί"1, mf1].
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Thus πx{Mz) is not abelian, and Mz is not homeomorphic to S2 x Sι.
This completes the proof of Theorem 2.

Finally we consider composite knots. A knot K is a composite
of nontrivial knots Kt and K2 if there is a 2-sphere S2 and an arc a
in S2 such that (1) S2Γ\K = {x, y) (x Φ y) (2) a is an arc from x to y
(3) ((Int S2) Π K) U α: is a knot of the same type as iξ (4) ((Ext S2) f)K){Ja
is a knot of the same type as K2. The composite knot K is denoted
by K^K2.

If mt is a meridian of Kt and ϊf is a longitude of Kt (i = 1, 2),
then the group of the composite knot, G(Kt # K2) = πJ^S3 — N(K)), is
the free product with amalgamation G{K^)*G{K2) with the identification
of subgroups (mx) of G{Kγ) and (m2) of G(iQ determined by m1 = m2.
A longitude for K^K2 is I = y 2. See [3]. By Theorem 1 it suffices
to consider composite knots with trivial Alexander polynomial. Such
a knot is the composite of two knots each with trivial Alexander
polynomial. The following theorem will be proved, however, for ar-
bitrary composite knots.

THEOREM 3. Elementary surgery along a composite knot does
not yield S2 x S\

Proof. Perform a longitudinal surgery along KX%K2. The fun-
damental group of the surgered manifold M3 is obtained by adding
the relation I = 1 oτ k = I,1 to G{K, # K2). Thus ^(ikF) can be con-
sidered as the free product with amalgamation G{K^)*G(K2) with the
identification of subgroups (llf mx) of G{K^) and (ϊ2, m2) of G(K2) de-
termined by lx = t 1 and m1 — m2. Since Kt is nontrivial, lt Φ 1 in
G{Ki), and so ^ Φ 1 in TΓ^M3). But lt is in the commutator subgroup
of G{K%)9 so also in the commutator subgroup of π^M3). Hence πx(Mz)
is nonabelian, and Mz is not homeomorphic to S2 x S1. This es-
tablishes Theorem 3.

We conclude with the following conjecture: S2 x Sι cannot be
obtained by elementary surgery along any nontrivial knot. The proof
of this conjecture like the proof of the conjecture, that elementary
surgery along a nontrivial knot does not yield a counterexample to
the Poincare Conjecture, seems very difficult.
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