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DERIVATIONS OF ,4 W*-ALGEBRAS ARE INNER

DORTE OLESEN

Using the theory of spectral subspaces associated with a
group of isometries of a Banach space it is proved that each
derivation of an APF*-algebra is inner. This constructive
method of proof yields a generator b for the case of a skew-
adjoint derivation which is seen to be the unique positive
generator such that \\bp\\ = \\δ\ Ap |1 for each central projec-
tion p in the ATF*-algebra A.

Introduction* The problem of whether derivations of AW*~
algebras are inner was first studied by I. Kaplansky in [9] and settled
in the affirmative for the case of a type I algebra. Later the result
was extended to type III algebras and type II factors by G. A. Elliott,
and to type H algebras with central trace by J. C. Deel, ([3], [4]).
It is not known whether this covers all cases.

The purpose of the present note is to show that each derivation
of an AW*-a,lgebra is inner, avoiding type classification. The method
employed is a modification of the one developed by W. B. Arveson in
[1], where he proves the corresponding theorem for TF*-algebras.
(See also Borchers [2].)

Specifically, we prove that the group of *-automorphisms eitδ,
where δ is a derivation of the ATF*-algebra A satisfying the condition
δ(α*) = — (<5(α))*, is implemented by a unitary group eitb with b SL
positive element of A.

In § 2 we prove a lemma which establishes a sufficient condition
that an element of a C*-algebra belong to a spectral subspace of the

eitxdp(x) with p(x) a given increasing family
a

of projections on [a, β]. This lemma is a corollary of [1, Theorem
2.3], formulated to suit the present context.

In § 3, we use Lemma 1 and the fact that each subset of an
AίF*-algebra has a largest left-annihilating projection inside the
algebra to construct an implementing group of unitaries for eitδ. The
constructive method of proof yields a generator b for <?, which is seen
to be the unique positive generator for δ such that \\bp\\ = | |δ | Ap ||
for each projection p in the center of A, an observation not made
in [I].

I want to thank G. K. Pedersen for his constant encouragement,
and G. A. Elliott for his critical comments.

I* Notation* The notation is taken from [1], For a brief
recapitulation, let us look at the special case in which we are interested,
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where at is a norm-continuous one-parameter group of isometries of
a Banach space X. For each / in L\R) let πa(f) denote the bounded
operator on X given by

«(/) = \

where the integral exists in the Bochner sense. With f(s) =
\ f(t)eistdt a n d — ̂ ^t^w^oo w e d e n o t e b y Ra(t, w) t h e n o r m -

closed subspace in X generated by the vectors τca(f)x where xe Xand
/ has compact support in (t, w). Note that since every norm-closed
convex set in X is σ(X, X')~closed, with Xr the dual of X, these sub-
spaces are in fact identical to the ones defined in [1]. The spectral
subspace associated with [t, w] is

Ma[t, w] = Π Ra(t - —, w + —

neN \ U 71

It follows immediately from this definition that

Π Ma[s, w] = Ma[t, w]
s<t

and that the spectral subspaces are invariant under at. As shown in
[1] we have

Ma[t, w] = {x eX\πa(f)x = 0 v/e 70[ί, w]}

where J0[ί, w] denotes the set of function / in L\R) such that / has
support disjoint from [t, w]. The existence of an approximate unit
(fx) in U(R) where (fλ) consist of functions with compact support
ensures that the above relation also holds if we define I0[t9 w] to be
those U-ίunctions / such that / has compact support disjoint from
[t, w].

THEOREM 2.3. [1] states the following relation: Let at, βt be
groups of isometries on X. Denote by φt the group on B(X) such
that φt(a) = <xra /37\ all a in B(X). Then

aMβ[t, oo) ξΞ:Ma[s + t, oo)yt <==> aeM*[s, oo) .

2. On some unitary groups. Let t ~+ p(t) be an increasing
projection-valued map from R into the C*-algebra A, and assume that
there exist a and β in R, a <; β, such that p(t) = 0 for all t ^ a and
p(t) = 1 for all t ^ β. Let / be a continuous map from [a, β] into C.
Put

sΛf, P) =
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where π denotes the division a• = u0 <; ut <^ <Lun =β and U e
[Ui-ι, Ui], Then by a well-known theorem the limit of sπ exists and is

f(t)dp(t) = lim sπ
\π\-*0

where \π\ = max |M* — ^_il Take f(t) = eitx with cc in /?, and set

eitxdp{t) = w, .

Then &—•Ms is a norm-continuous group of unitary elements of A.

In the case where p(t) = 1 for all t>β,ux as above denotes the com-

mon value of the integrals from a to β + ε, all ε > 0.

eitxdp(t) and put φx = ux ut. Then for a

a

in A and s in R

p(t + s)ap(t) = p(t + s)aVte R => a e Mφ[s, oo) .

Proof. Assume A to be represented faithfully on a Hubert space
H. By Stone's theorem we know the existence of a unique increasing
left-continuous spectral measure q(t) such that

ux = j eu'dq(t) ,

and from the relations

M*[tQ, oo) c i^(£, oo) c [(1 - q(t))H] c

for all ί0 > ί we see that

ikf^ί, oo) = [(1 -

Now p(ί) tends strongly to q(t0) as t / U, and so p(ί + s)α(l — p(t))
tends strongly to g(ί0 + s)a(l — q(t0)) for all a in A. From this it
follows that if a satisfies the hypothesis of the lemma, it also satisfies
the relation

q(t + s)a q(t) = q(t + s)a Vί e i? ,

but this is equivalent to

αJlί^ί, oo) c Mu[t + s, oo) yt e R ,

which by [1, Theorem 2.3] implies that aeMφ[s, oo).

3* Construction of the generator for <?• Recall that a C*-
algebra A is an ATF*~algebra, (see [8]) if for any subset S of A
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there is a unique projection p in A such that

{a e A I as = 0 Vs e S} = Ap .

p is called the left-annihilating projection of S.

THEOREM 2. If δ is a derivation of the AW ""-algebra A there
is an element b in A such that δ = adb. If 8 — — δ*, b can be chosen
positive and with norm equal to the norm of δ.

Proof. Since each derivation δ has a unique decomposition δ —
δi + iδ2, with δt = δ*, it suffices to prove the last statement.

Let δ — — δ*. Denote by at the ^-automorphism group eitδ, and
let p(t) be the left-annihilating projection of the spectral subspace
Ma[t, co). The map t—*p(t) taking R into the fixed-point algebra
Ma[0] is increasing. AsleikP[0], we have p(0) — 0. The claim
p(t) — 1 for t > || δ || is seen as follows: We want to prove that when-
ever fe L\R) such that / has compact support in {\\δ\\ + s, oo), then
κa(f) = 0> or equivalently that for all g e L\R) where g has compact
support in (0, oo), τrα(#.£Γί(iml+ε) ) = 0.

Now g extends to an H1 function in the lower half plane if we
define

g(z) = 7Γ-Γ g(t)e~itzdt
2π Jo

and for the ZΛnorms of x —> gy(x) = g(x + iy), y fixed, we have

(see [61, p. 124-128 and p. 131). Now

gy(χ) = g(χ + iy) = 4~ Γ/(* + IIδ

2π Jo
= JL Γ f(w)e~izwe+iz{mwdw

2 τ τ J ι i ί i ι + e

= e

+iz{Uδlι+ε)f(z) = β + ί a ; | | ί "

so

II ϋy 111 "~~ β WJy Mi

from which it follows that

and so we get (see [2])
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\/(α)α*<to = \f(x + iy)ax+tydx\\
I I J II J II

< pVi\\δ\\+e) II f (I II pi(x+iy)δ II < 0y{ | |S| | +ε) (I f II - - y | | ί | |

= e II / lii \\e II = e II J Ik e

= ^ e | | / l l i >0 a s 1/ • - o o .

According to § 2, the group ut = \ eitxdp(x) is well-defined. We

want to show that it implements au i.e., that

Denoting the right side by φu it suffices to see that

Ma[t, oo) ^Mφ[t, oo) v £ e i ί .

Indeed, as 9?t and α t are both norm-continuous one-parameter groups
of self-ad joint (i.e., adjoint-preserving) operators on A, the group
βt(i) — ΨfΎ-oίT1, yeB(A), is a norm-continuous adjoint-preserving
group on B{A). It follows that Mβ[t, oo)* = Jlf^-oo, -t] for all t in
R, so whenever a self-ad joint element Ύ in 2?(A) belongs to Mβ[t, oo), 7
belongs to 1P[£, — ί]. We know by [1, Theorem 2.3] that the inclusion
Ma[t, oo)^Mφ[tf 00) implies that ideMβ[0, 00). The preceding argu-
ment shows that id is then in Mβ[0], so φtidajι — id for all ί, thus

Using the multiplicative property of at a rather straightforward
calculation shows that for all t and s in R

Ra(t, oo)Ra(s, 00) ^Ra(t + S, cxo) .

Indeed, for /, 0 e L^i?) such that /, g have compact support

= jj f(t)g(u)at(xau_ty)dtdu

= \\ f(t)g(w + t)at(xawy)dtdw

= \ ( j f{t)gw{t)at{xawy)dt)dw

= \ (S tf*diS'(t)at(xaw

So if supp/ c (ί, 00) and supp g a(s, 00) we have zw c iϋα(£ + s, 00), as
* ^ c ( ί + s, oo)(fflβ(t) = flr(ί + w ) , so ^w(s) = β" ί s^(s)).

From this it follows immediately that for all £ and s in if

s, 00) ̂ Ma[t + s, 00) ,

so if aeMa[t, 00) and eZeikfα[s, 00) we get that
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p(t + s)ad = 0 .

However, this implies that p(t -f s)a belongs to the left-annihilator of
Ma[s, oo), thus

p(t + s)a p(s) = p(t + s)a .

The desired conclusion now follows from Lemma 1.
The generator for δ thus constructed is

S 11*11
tdp(t) .

0

It is obvious that || δ| | <> | | δ | | . On the other hand, b - (|| 6||)/2 1 is
also a generator for 5, and || b - (|| δ||)/2-l || = || δ||/2. So we get that

I I & I I = 1 1 * 1 1 .
In [5] it is shown that for each inner derivation δ of an AW*-

algebra A there is a unique generator a of norm ||δ||/2 such that

for each projection p in the center of A. This generalizes a result
in [7] concerning self-ad joint derivations of von Neumann algebras.
Here we have the following result:

PROPOSITION 3. With 3 = — δ*, the element b in A as constructed
above is the unique positive generator for δ such that

\\bp\\ = \\δ\Ap\\

for each projection p in the center C of A. If δ = adc, c ^ 0, then
o S b ^ 0, so b is the minimal positive generator for 8.

Proof. Let p denote a central projection in A. We want to see
that || ftp || = || δ I Ap\\. Since at = eitδ leaves C pointwise invariant
it follows from the definition of spectral subspaces that

Ma[t, w]nAp = Map[t, w] ,

where ap denotes the group of automorphisms of Ap obtained by
restricting the at's to Ap. Consequently the construction carried out
in the proof above will produce bp as a generator for δ on Ap. Thus

|| ftp || = \\δ\Ap\\ .

Now assume c to be another positive generator for δ. Using
nothing but the fact that b is a positive generator for δ satisfying
the above condition on the norm we can prove c ^ δ, as follows: Since
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b and c are both positive generators for δ, the difference b — c is in
C. Suppose λ was a positive scalar in sp(b — c). Given a sufficiently
small ε > 0 we could then find a nonzero projection p in C such that

(b — c)p ^> εp .

But as cp is a positive generator for δ \ Ap we have, arguing as
before

\\bp\\ = \\δ\Ap\\£\\cp\\,

and combining we get

0 ^ cp <: bp — εp <: (|| bp || — ε)p ^ (|| cp || — ε)p ,

a contradiction. Therefore, sp(6 — c)S(— oo, 0), i.e., c — 6 ̂  0. The
uniqueness of the positive generator satisfying the above norm con-
dition follows from the fact that it is the smallest positive generator.
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