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An almost-complex manifold supports an involution if there
is a differentiable self-map on the manifold of period two.
The differential of the map acts on the coset space of the
almost-complex structures on M by inner automorphism.
This action is also of period two. If the almost-complex
structure is sent to its conjugate, the manifold with structure,
together with the given involution is called a conjugation.
Any linear involution of Euclidean space may be used to
stabilize this situation, giving a cobordism theory of exotic
conjugations. The question considered here is: What is the
image in complex cobordism of the functor which forgets
equivariance. The result shown in the next section is: If a
stably almost-complex manifold supports an exotic conjugation,
every characteristic number is even.

The first cobordism results on conjugations are due to Conner
and Floyd [3] (§ 24). In [4], Landweber established the equivariant
analogues of the Thorn theorems. Certain examples have been con-
sidered by Landweber, [5] (§ 3), and together with the result here
the image of the forgetful functor can be seen to be maximal, in
some cases.

2* Proof of the theorem. It is well-known from the work of
Thorn and Milnor that the unoriented bordism ring ~4^, with
spectrum MO, is a polynomial ring over Z2 on manifold classes nt,
t + 1 any positive integer not a power of two (t nondyadic). Also
^ , the complex bordism ring with spectrum MU, is a polynomial
ring over Z on manifold classes uu t = 0, 1, •••. Representatives
for the dyadic generators ut, t + 1 = 2f, may be chosen so that
every normal characteristic number is even. The principal ideal in
^ generated by dyadic generators is the graded Milnor ideal
associated to 2, /. I2k = If) ^2k.

If a partition of k contains a dyadic integer the partition will
be called dyadic. Let d(k) denote the dyadic partitions of k, n(k)
the nondyadic partitions of k. If a = αxα2 ar is a partition of k
then the group generator uai uar e ^2k will be denoted ua.
Similarly for na e <yV\.

If MU(n) is given the involution defined in [4] then it is a
G-complex, G — Z2, in the sense of Bredon. Note that ώo(Mϊ7(?ι)) =
w^MUin)) = 0. The construction given in the next section produces,
for each partition of k, a, and sufficiently large n, an equivariant
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inclusion and a G-complex e": MU(n) —* Y" such that

(c i ) ωn+k(Y ) _ | Q . f a e d ( k )

(c ii) ώtn+2h( Y') = (0 - {Z, (-1)"+»})
(ciii) ft)s(Γα) = 0 if t Φ n + A;, 2n + 2A;

(c iv) β«(f ) f: <S,.+tt(Ml7(w))(£) s % - ώta+tt( Fα)

uα to an odd multiple of the generator a e w(jfe).
Let the r + s sphere with the orthogonal involution fixing an

equatorial s-sphere be denoted Sr's. The G-complex formed by
attaching the cone over S°>s in Sr>s will be denoted Sr's/S°>8. Let
the equivariant homotopy groups

) s Z maps

be denoted λ ^ α δ and XYa>b respectively. It is understood that a + b
is much less than n whenever this is used.

It is easy to see, from the cochain complex, [1] I § 6, of Sr's/S0>s

that if ώ is any generic coefficient system with a G-action g on

o)\ — ) then

(0 if 0 <k^ s or r + s <k

Ker(l + (-1)*-,
if s <k<r

if k = r +

Note that the groups XYa,b are the same for all partitions a
of k. I.e., by Bredon's classification theorem [1] II (2.11)

q,k-q

λ F ,
0 even t> 1
Z2 q odd

λΓz,m = 0 I + m < 2k .

From this computation the main result may now be deduced.
Let ψ denote the forgetful functor.

THEOREM. ua e Image {f: λ Uk+Qtk_q -• ̂ J 07% if a e

Proof. Suppose ^α is in the image of ψ. Consider the com-
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mutative diagram with exact row (see [3], p. 286 for definitions of
a, β, and f):

q k_q

XYk+q+ltk_q

If g were odd, the lower ψ is zero. By (c iv) the upper ψ is zero

and ua = 0, a contradiction. Now suppose g is even. The exact

row then is 0—>Z—•Z—>Z2 —>0 so that βα(— ) maps ua to an even

multiple of the generator and by (c iv), a e d(k).

COROLLARY. Image f g l ,

Proof. By ([4], (4.1)), 2^αGImaged for every a.

Then if w e Image φ, subtract off even multiples of group
generators until we have w = 2wf + uai + u«2 + + %«r Now con-
struct diagram (2.1) for a successively equal to au •• ,^z This
shows that aλ e d(k), , at e d(&), and the corollary is proved.

As a corollary of the construction in [5] § 3 there are free
exotic conjugations on representatives uu t — 2J* — 1, showing that
Image {ψ: λ^ ί + ί j t_ g —»^2t} contains ^ t provided g divisible by 2φ(ί+2).
Since the image of a forgetful functor is an ideal in ̂  this shows:

COROLLARY. Image {ψ: XUk+q>k_q -> ̂ 2fc} = I2k if t = 2j - l^ k <
2 i + 1 — 1 α^d q divisible by 2φ ( ί + 2 ). ^(m) is the familiar number equal
to the number of integers s, 0 < s < m with s = 0, 1, 2, 4 (mod 8).

3. The construction* Recall Bredon's procedure for killing the
homotopy groups of a G-space X, with ωo(X, x0) = ώ^X, α?0) = 0. Let
Γ be some G-set and F(T) the free abelian G-module on T such
that Horn (F(T), ωr(X)) contains an epimorphism Ar. By use of
[2], Chapter II, (2.11), take a representative ar: S

r(T+)->X and define
Xr+1 by the equivariant Puppe sequence,

sr(τ+) - ^ » x-i-> xr+1 — > sr+\τ+) — > . . . .
Bredon shows, [2], (6.6), that

j{. ώt{X) > ώt(Xr+1) is an isomorphism for

O^t^r - 1 and ώr(Xr+1) = 0 .
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In this construction of Ya there are at most two r where Ar is
not taken to be an epimorphism. To begin, let a be a partition of

k ^ 0 and take n > 2k - 1 so that πn+k(MO(n)) = ώn+k(MU(n))(9i) =

^Tk and π2n+2k(MU(n)) = ώ2n+2k(MU(n))(jj ~ %S2k. If a is dyadic let

denote the zero element. Regard na and ua as elements of

Let Yo = MU(n) and let all Ar be epimorphisms 0 < r < n + fc.
Denote the composition of the inclusions by Er: MU(n) = Γ o c c Γ r .
If a is dyadic, let A r be epimorphisms 0 < r < 2n + 2k; if not let
An+k be defined as follows. Let Tn+k be the G-set of all elements in

<5n+*(y*+*-i)(gί) except En+H(na) and all elements in ώ ^ Γ ^ ^ )

Take An+k to be the natural homomorphism defined by extending

the G-set inclusion Tn+k^ ώn+k(Yn+k_^). Now let Arf n + k < r <

2n + 2fc, be epimorphisms. Let the free cyclic summand containing

-) be denoted F. Define T2n+2k to be

the G-set of elements in the union of the sets ώ2n+2k(Y2n+2k-i)[r<) and

ώ2n+2*(ir2n+2fc-i)("τ) — F, and define A2n+2k to be the natural induced
homomorphism. To define Yr, 2n + 2k < r, let Ar be epimorphisms.
This defines Ya as a limit of G-complexes MU(n) = Y"o c FL c .
Let eα: MU(n) —> Γ α be the inclusion.

It is clear that (c i) and (iii) are satisfied by this construction.
To check the others some notation will be required. Let g: S2n+2k —*
MU(n) be some representative for uaf transverse regular on B U(n) c
MU(n) and let Ma = g-\BU(n)). Let vne H2n(MU(n); Z) denote the
universal Thorn class and sa e H2k(BU(n); Z) the symmetric function as-
sociated to a in the universal Chern classes cl9 c2, . Let /: MU{n) —>
K(Z, 2n + 2k) represent saUvne H2n+2k(MU(n); Z). It is well-known
that the degree defined by fog is the normal characteristic number
of Mat sa(ua).

The G-action of conjugation sends cx to —clf so by the splitting
principle cn is sent to ( —l)?n, vn to ( — l)nvn and sa U v% to (~l)w+;i;sαU
vn. However, this determines the G-action on homology which,
through the Hurewicz isomorphism, gives the G-action on 7t2n+2k{MJJ(n)).
To check the remainder of (c ii) we attempt to extend the map / to
a map h: Ya -> K(Z, 2n + 2k).

The preceding construction shows that an extension of / to
/ " : Y2n+2k-ι—*K{Z, 2n + 2k) exists for dimensional reasons. Thus
there is an integer, N Φ 0, such that N'f^(E2n+2k_^(ua)) = /#(uα) in
π2n+2k(K(Z, 2n + 2k)). Note that th is justifies the preceding claim that
E2n+2k^ua) lies in an infinite cyclic summand in ώ2ίt+2A(Y2ϊ,+2A;-i)(G/(e,
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F. Since n + k may be taken odd, F has only one fixed point, 0.
Thus, in the construction, Image A2n+2k and F have only 0 in common.
But /#" lives on F, so an extension / ' : Y2n+2kK(Z, 2n + 2k) exists.
The desired extension, h, exists now by dimensional considerations
and the following homotopy diagram commutes.

π2n+2k(S2«+?k) JfL°i>L> π2n+2k(Y«)

"i / r
π2n+2k(MU(n)) ~ — > π2n+2k(K(Z, 2n + 2k))

Since /# carries a generator to nonzero multiple of the generator,
sa(ua) g, we see that π2n+2k(Ya) cannot be finite. By construction, it
is cyclic on one generator and this completes the verification of (c ii).

From this diagram, note that e# carries ua to some multiple of
the generator, y, of π2n+2k(Ya), e%(ua) = My. By commutativity, M
divides sa(ua). But if α e n(k), sa(ua) is odd; thus M is odd and
(c iv) is verified.
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