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PROBABILITIES OF WIENER PATHS CROSSING
DIFFERENTIABLE CURVES

C. PARK AND S. R. PARANJAPE

Let {W(t); t = 0} be the standard Wiener process. The
probabilities P[supys,<r W(t) = b] and P[sup,s,<r W(t) — at = b]
are well known. This paper gives the probabilities of the
type Plsup,s.<r W(t) — f(t) = b] for a large class of differenti-
able functions f(f) by the use of integral equation tech-
niques.

1. Introduction. Let {W(t),¢ = 0} be the standard Wiener
process such that (i) P[W(0) =0] =1, (ii) EW({) =0 for all ¢ =0,
and (iii) Cov [W(s), W(t)] = min (s, t). It is well known that for b = 0

1.1) Plsupos,<r W(t) 2 b] = 2P[W(T) =z b] = 2¥(bT'")
where

U(x) = 2r)y 2 r exp (—u*/2)du ,
and that ’

Plsup,<; < W(t) — at = b]
=U[@T + b)T"] + exp (—2ab)@[(a T — b) T,

where @(z) = 1 — ¥(x).

The identity (1.1) can be found in [2:392], [5:286], and [11:256]
while the identity (1.2) can be found in [6], [7:348-349], and [9:80-
82]. Doob [3:397-399] gives a very interesting proof of (1.2) for
T = o case only. Shepp’s proof for (1.2) is based on his transfor-
mation theorem in [7]. Cameron-Martin translation theorem in [1]
also gives the same result using Shepp’s argument.

The main purpose of this paper is to find the probability
Plsup,c,<r W(t) — f(t) = b] for a large class of functions f(¢) differenti-
able in (0, T'], which is a generalization of the results (1.1) and (1.2).
Durbin [4] gave an integral equation whose solution would be the
" required probability. However, it turned out to be that his integral
equation could not be solved analytically, and hence he presented a
numerical approximation method. After that Smith [8] introduced
some new techniques to obtain an approximation for the probability.
The present authors’ integral equation gives explicit expression for
the solution, while Durbin’s and Smith’s do not.

(1.2)

2. Statement of the result and proof.

THEOREM. For each T >0 let f(t) be continuous on [0, T],
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differentiable in (0, T), and satisfy |f'(t)| < C/t* (p < 1/2) for some
constant C. Then the probability Plsup,s.<r W(t) — f(t) = b] = F(T)
15 one if f(0) + b <0, and otherwise it is given as the unique con-
tinuous solution of the integral equation

2.1) F(T) = 20[(f(T) + b)T~*] — 2 g:F(t)M(T, tdt
where
U(x) = (21) S” exp (—u?/2)du
and
P

() S exp (—uy2)du, 0 <t <z < T)

0, (0=z<t<T).

—oa

(2.2) M(z, t) = {

More precisely for f(0) +b >0
Plsup,<:<r W(E) — f(t) = b]

(2.3) = (T) + 21 4n S: KT, th(t)dt ,

where
WT) = 2U[(f(T) + b)T~*] — 4 ST M(T, F[(f () + b)t1dt ,
K(T, 8 = | M7, oMz, vz,
and
K, (T, ¢) = San(T, DKz, t)dz .

Proof. If f(0)+ b <0, then since W(0) =0 a.s., it is obvious
that the probability is one. Now, let T = t(w) be the first hitting
time of the curve f(¢f) + b by the sample path W(t, w), that is to say
that W(z, w) = f(z) + b, and if 0=t <7, then W(t, w) <f(¢) + b.
If W(t, w) never reaches the curve f(¢) + b, then we simply set ¢ = .
Thus

F(T) = P[W(T) =z f(T) + b]
+ P[suDPos.<r W(s) — f(s) = b, W(T) < f(T) + b] .

Using the fact that Pt < t] = PlsuPos.<: W(s) — f(s) = b] = F(t) and
the notation in the theorem, we obtain
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F(T) = 7[(f(T) + b) T
+ S:P[W(T) <A(T) + b7 = AF()
= T[(f(T) + )T~
+ SOTP[W(T) — W(t) < A(T) — £(t) | = = tJAF () .
Since the increment W(T') — W(t) is independent of the condition 7 = ¢,
it follows that
F(T) =7[(f(T) + 5)T~"]
+ ol - sexT - omar e

where @(x) = (2m)™* Si exp (—u?/2)dw. As lim,, [f(T) — fE)NT —

t)"'# = 0, integration by parts yields (interpreting the integral in
improper sense)

F(T) = FI(f(T) + BT ] + LF(T) - |, FOMT, vt ,

from which (2.1) follows.
To solve the integral equation (2.1) rewrite M(z, t) by the use of
(2.2)

(2.49) ~l2(y . £\l _ £ f(=) — f(t) _w
@) e = 07 =) + LA=LO ]exp{ o }
Mz, 1) = if 0<t<z<T,
0 if 0<z<t<T.

Apparently M(z, t) is not square integrable on [0, T]*. Hence the
integral equation (2.1) can not be solved by usual methods for Volterra
integral equations of the second kind (see Tricomi [10, pp.10-15]).
However, using the expression (2.1) for F(f) in the right-hand side
of (2.1), we can rewrite (2.1) as:

F(T) = G(T) — 2 S M(T, z)[G(z) _2 g F(t)M(z, t)dt:ldz ,

where G(T) = 2¥[(f(T) + b)T~*]. Thus the change of order of in-
tegration gives

F(T) = G(T) — 2 S M(T, )G(t)dt
2.5 ’
) 4 ﬂ: F(t)]:Sj M(T, )Mz, t)dz]dt :

Now, using the conditions on f(7T) in the theorem and the Mean
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Value Theorem, we obtain from (2.4) with suitable constants C, and C,

l Sj M(T, 2)M(z, t)dz‘

<C Sj (T — 2)y 'z — t)‘l/z[[f’(z)} + %z-p][ff'(t)l +_g_’ t"’ldz

< Ct* S (T — 2z — ty "2 "dz .
1
The substitution 2z = ¢ + (T — t)u in the above yields

| ST M(T, 2)M(z, t)dz‘ < czrf’gl (1 — w)y Pyt T + (L — w)t]du
S CtPT gl 1 — w)™ Py du

< (const)t=?71".

Thus the kernel gT M(T, 2)M(z, t)dz in the integral equation (2.5) is

indeed square integrable for any p < 1/2, and hence the integral
equation has a unique continuous solution for F(T), and the solution
is given by (2.3) (see Tricomi [10, pp. 5-8]).

REMARK. In some special cases of f(f) the integral equation in
the theorem can be solved more directly.

Case 1. If f(t) = ¢ in the theorem, then M(T,t) = 0 and hence
F(T) =2 ¥[(c + b)T '] which agrees with (1.1).

Case 2. If f(t) = at, then

aVT—¢
M(T, t) = (27:)*/2% § exp (— u/2)du

—co

= 2 (T —ty'exp[—a(T — t)/2] = N(T — 8),0<t < T.
2(2m)?

If we set G(T) = 2¥[(aT + b)T'"], then the integral equation becomes

F(T) = G(T) — 2 ST FON(T — t)dt .

~co

Taking the Laplace transform (L{F(T)} = } ¢ *"F(T)dT) of both
g

sides, we get
L{F(T)] = LIG(T)] — 2L[F(T)]LIN(T)} ,

or
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LIF(T)] = LIG(T))/{1 + 2LIN(T)]}
=stexp[—ab — b(@2s + a?)'] .

Therefore,
F(T)=1-=9[(aT + b)T™'"] + exp (—2ab)@[(aT — b)T*"]
which agrees with (1.2).
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