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Let Z be the set of integers. In this paper it is shown
that there is no effective characterization of all direct sum
subset decompositions of Z i.e., where A+B=Z and the sums
are distinct. Further the result is generalized to include
decompositions of a product of sets where Z is a set in the
product, and to cases where the number of subsets in the
decomposition is greater than two.

The question of characterizing all direct sum subset decompo-
sitions for Z, the infinite cyclic group, seems first to have been raised
explicitly by de Bruijn [1]. It was mentioned again by de Bruijn
[2] in 1956, and Long [5] in 1967. The notation i φ J ? will denote
A + B where the sums are distinct. Without loss of generality we
will assume 0 is a member of each summand.

For the semi-group Z+ there is a particularly nice characterization
of all direct sum decompositions. The result, which was implicit from
the work of de Bruijn [2], was first explicitly by Long [5]. It is
the following:

THEOREM 1. Let \ A | = | B \ = oo. A © B = Z+ if and only if
there exists an infinite sequence of integers {mj α i with mf ^ 2 for
all i, such that A and B are the sets of all finite sums of the form

a — y\ x M

respectively, where 0 ^ xt < mi+1 for i >̂ 0 where MQ = 1 and Mt =
Π U % for i ^ l .

In case \A\<oo or | J? | < oo, a similar characterization holds
with the change that the sequence {mj will be of finite length r and
the only restriction on xr is that it be nonnegative.

A distinguishing characteristic of decompositions obtained as in
Theorem 1 is that either A or B has the property that each of its
elements is a multiple of some integer m ^ 2 and it has been conjec-
tured that this property would necessarily hold for any decomposition
of Z. The following theorem shows that this is not the case and that
the decomposing sets A and B can be quite arbitrary. It follows that
there is no real possibility of effectively characterizing A and B.
We do obtain a rather weak characterization in Theorem 3.
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Throughout this paper, unless otherwise noted, all maximums
and minimums will be taken with respect to the following order

THEOREM 2. Suppose that A1 and Bx are finite, that 0eA1f)B1,
and that A1 -f Bx = A10 Blf then there exist sets A and B, both
infinite, such that A1 a A, B1cz B, and i φ B — Z.

Proof. We first let

n, - min(^ ~ (A, 0 Bj)

and

mι = |max(ΛU #iUK}) |

where the min and max are taken with respect to the previously
mentioned order. We now construct A and B by an inductive pro-
cedure. Let

A2 = A1 U {nt

and

then

A2 + B2 = (A, 0 Bx) U ( K + 5mJ + J5X) U ({-δmj -I- Λ) U K} .

We now claim that A2 + 5 2 = A2 0 J52. Of course, this is immediate
if the sets in the above union are mutually disjoint. The fact that
they are disjoint is assured by the following inequalities which derive
from the definitions of nγ and mι and the fact m1 > 0.

— 5mL + a ^ — 4m! < — 2m1 g a' + b

n1 + 5m1 + b ^ 3mL > 2mL ^ α + bf

nx + 5mx + b > 0 > ( —5mL) + α

^i + 5m! + b ^ 3m! > | ̂  |

I — 5mx + a I ̂  4mL > | nγ \

for all α, α' 6 Ax and b, V e Bx.
Note that nλ e A2 0 J32 so that we have enlarged the interval about

the origin in which all integers are represented. Also it is clear the
process can be repeated to obtain sets At and I?* f or i ^ 2 which are
supersets of A^ and JS^ and such that At + B% — A^Bi. Setting
A = |JΓ=iΛ and £ = UΓ=i Bi we have desired decomposition A®B = Z,
since any given w is an element of A2n+ι 0 B2n+1. This completes the
proof.
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Theorem 2 shows that any two finite sets A and B with AaZ,
BaZand A + B — Aξ&B can be extended to two infinite sets which
are a direct sum decomposition of Z. This shows that it is certainly
not necessarily the case that every element of A or B has a multiple
of some integer m ^ 2. It also shows that no condition can be placed
on the size or location of the two elements which sum to a given n.
Thus, a best possible type of characterization of decomposition of Z
will be of the nature of Theorem 3. Let A(k) = {a e A | | a | ^ | k |}.

THEOREM 3. AφB = Z if and only if for each neZthere exists
keZ such that

Proof. Suppose first that AφB = Z and let neZ. For each
ieZ(n), set

kt = max{α ,̂ bt \ at + 6* = i, αέ e A, bt e 5}

Also, set & = max{^ | i e Z(n)}. Then, since ie A(ki) +
A(k) and J5(^) c 5(Λ) for all i e Z(^), it follows that

Z(n) c A(k) + B(k) = A(k) 0 B(k) .

The last equality follows from the fact that A(k) c A, B(k) c B and

Conversely, suppose that for each n e Z there exists kn such that

If we set A = UΓ=i^fe) and J5 = UΓ=i£(&«), then clearly neA + B
for any neZ; i.e., ^ c A + £ . Since A + B c Z is trivially true, it
follows that Z= A + B. lί A + B Φ A(&B, then there exist positive
integers i and j and an integer n such that

w, = a + b — at + bj

with α 6 A(kn), b e B(kn), at e A(k%), bά e B(kj)f a Φ ai9 and b Φ bό. But
then, if k' = msix{ku kjf kn], it is clear that

A(kp) + B(kq) c A{k') + B{k')

for p and q e {i, j , n}, and this implies that n has two representations
in A{k') + B{kΫ) in violation to the fact

A{k') + J5(Λ') = A(k') 0 S(fc') .

This completes the proof.
We now consider the remaining case for A@ B = Z when one
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of A and B is finite. We assume without loss of generality that
\A\ < co.

THEOREM 4. Let \A\<oof then Aξ&B = Z if and only if there
exists an n such that B = nZ@ C where Cc{0,1, ,n — 1} and 4 0 C
is a complete residue system modulo n.

Proof. Since A 0 C is a complete residue system modulo n, it
is clear that

Conversely suppose A® B = Z with A of finite order. Under
these conditions, Hajόs [3] proved that B is periodic, i.e., there exists
an n Φ 0 such that n + B = B. Since 0 e B we have nZczB. Letting
C = BΠ{0, 1, , n - 1} we have B = nZ® C. Since 2 = 4 © ΰ =
(A 0 C) + %Z, it is clear that A 0 C must be a complete residue
system modulo n.

2 Generalizations. Consider subsets DidZ with OeD, for 1 <;
i ^ n, then a generalization of Theorem 2 is obtained by replacing
Z with Z x A x x A The method of proof is similar except
that the order is replaced by (x0, , xk) > (yQ, ylf ',yk) if Σ \%t\ >
Σ \ V i \ o r > i n c a s e Σ \ χ i \ = Σ \Vi\> (%o, • • - , # * ) > ( 2 / 0 , •••, I / * ) i f » i > 2 / i

for the least i such that xiφyi. The least element in the ordering
for which there is no representation by Aγ 0 Bγ is n^ The mι is
the maximum over any entry in any element of Au Bx or {^J. In
particular, this shows that no strong characterization such as that
exhibited for Z+ x Z+ by Hanson [4] and Niven [6] can exist for
Z x Z or Z x Z+.

The preceding theorems all generalize from the case of two
summands to the case of any number of summands. Further, since
the construction of Theorem 2 is by a single element at a time, the
summands can be created with any given order.
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