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MEAN CONTINUOUS AT THE BOUNDARY
OF THE UNIT BALL

J. R. DIEDERICH

In this paper it will be shown that superharmonic func-
tions can be represented by a Green potential together with
their boundary values if taken mean continuously at the
boundary of the unit ball.

Introduction. It is well known that if wu(r, 0, ¢) is harmonic
inside the unit ball and has radial limit lim,_, u(r, ¢, ) = 0 everywhere
on the surface, then u is not necessarily identically null inside and thus
cannot be represented by its radial boundary values. Furthermore, there
is an L, (Lebesgue class) harmonic function, see §2. Remarks, which
satisfies lim,_, u(r, 6, ¢) = 0 except for (1, 0, 0). In [1] and [3], Shapiro
established the representation of harmonic functions in the two
dimensional unit disc by their radial limits when a certain radial
growth condition is satisfied. However, the set of functions satisfying
the radial growth condition does not contain the class IL,, and con-
versely. Also, the analogues of [1] and [3] have not been established
in the N-dimensional unit ball, 3 < N.

Our intention is to establish a representation of superharmonic
functions in L, on the N-dimensional unit ball by their boundary values
if taken mean continuously. Definitions and the statement of the
theorems follow in the next section.

1. Preliminaries. We shall work in N-dimensional Euclidean
space R¥,3 < N, and shall use the following notation: z = (x,, - - -,
xy) and B(x, r) = the open N-ball centered at x with radius »; B(x,
r) = B(z, r) N B(0, 1); | |, the Lebesgue measure of E;JFE, the bound-
ary of E;0B(x, r) = 0B(0, 1) N B(x, r); dwy, the natural surface area
on 9B(0, 1); and subscripted A’s, positive absolute constances though
possibly different from one occurrence to another. For a point y,¢
8B(0, 1), u(x) a measurable function on some B(y, ), and f(y) a
function on 0B(0, 1), we set for p < 7,

wiys 0) = By o)1 |, Ju@) = £ da .

B(yg

We use the notation u(y,, o) when f = 0.

THEOREM 1. Let u(x) be superharmonic in 2 = B(0,1). If
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(1) w(y, 0) = 01) as p—0 for each yeiQ
(2) uy, p) =o01) as p—0 a.e.[dw] on 02

then 0 < u(x) on 2.
Theorem 1 is the main step in establishing

THEOREM 2. Let w(x) be superharmonic in B(0,1). Let f(y) be
wn L, on 02 and satisfy

(3) . 170 = f@)ldo) = 0"

9B(yg

as p——0 for each yY,c09 .
If wiy, p) satisfies (1) and (2), then

(4) u(@) = | GG, e)an) + PIS, o)

where G(z, x) is the Green function for 2,1 is a nonnegative additive
measure on 2, and PI(f, x) is the Poisson integral of f.

2. REMARK. Theorem 1 is best possible in two respects. If (1)
is required for all but one y,e dB(0, 1), then the conclusion fails as is
demonstrated by u(z) = (|2 — D[wy|2z — v,[*™, with y,= (1,0, ---,
0). Secondly, if the modulus is eliminated in the definition of u(y, o)
and the integral is defined improperly, then the conclusion fails even
if (2) is strengthened to “for each yec0Q”. Simply consider a non-
radial partial of the above function. In Theorem 2 the necessity of
(3) is not clear.

Clearly, Theorem 1 offers a uniqueness theorem for harmonic
functions which are mean continuous at the boundary of the unit ball.
Also, contained in the proof of Theorem 1 is a generalization of the
reflection principle for harmonic funections.

Finally, an open question regarding a converse to Theorem 1
will be considered in §5.

3. Proof of Theorem 1. Set w (x) = min (u(x), 0). Then u (x)
is superharmonic and clearly satisfies both (1) and (2). We intend,
of course, to show that % (x) = 0 which we shall do in the following
steps.

Let Z be the set of points z on 02 such that u(x) is unbounded
in every neighborhood B(z, p). 62 — Z clearly open so that Z is a
closed set.

Step 1. If y,e 02 and 9B(y,, 20)) N Z = ¢, then lim,., u~(x) = 0 for
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LAS E(Z/o: 0 and ye 53(?/0, 00).

Proof. Let y be a point of dB(y, p,) for which (2) is satisfied.
Let © be a point on the line segment !, through the center of 2 and
y. Select p, = |x — y/|, then by the superharmonicity of « (x)

0= u(2) = | Bz, p.)|™ S W (@)’

B(z,p

= B, )| w@)da

T(y,20,)
= 27| B(y, 2001 |
= —2Nu_(yr 210x) .

As x—y, 20, — 0, thus u (y, 20,) — 0, since y is selected to satisfy
2). So
(5) limu(x) =0  a.e. on 0By, 20,) -

-y
zely

u” (x)dx'
04)

E(y,zo

By the definition of Z and the superharmonicity of « (x) it is clear
that »~(x) is bounded in B(y,, p,), and hence can be represented

) = |

Blyg, 0g

)Go(x, 2Ndn(x") + h(x)

where G(», 2') is the Green function for B(y, 0.), 7, is a nonnegative
set function and %7 (x) is the greatest harmonic minorant of u (x).
By Theorem 1 [4, p. 527], we have that

lim S
x—y J B(yg, P
xely

)Go(m, xYdn,(x') = 0 a.e. on GB(Y, 0,) .

By this and (5)
(6) limh (x) =0 a.e. on 0B(y,, p,) .

Ty
zely

Clearly h~(x) is bounded in B(y,, p,) and therefore can be represented

by its radial limits. Hence lim,., 2 (z) = 0 for wz¢ B(y,, 0,) and ye

0B(y,, 0,). Since 0 = u(x) = h~(x), the desired conclusion follows.
As an immediate consequence of Step 1, we have

Step 2. If 3B(y,, 20)N Z = ¢, then the funection wuy(x) = u ()
for x e B(y,, 00), Uy () = 0 for x € B(y,, 0,) — B(y,, ©o) is superharmonic
in B(y,, 00)-

Proof. w (x) is continuously 0 at B(y, ©,) and nonpositive in
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E(yo, 00)-

Step 3. If Z + ¢, then thereis a z,€ Z, an r, > 0, and a constant
A,, such that

(7) u (2, 0) <A for 2€dB(z,2r)NZ (0<p<1l).

Proof. Since u (x) is superharmonic and satisfies (2), it is in L,
on 2. Consequently by continuity of the integral u(y, o) is jointly
continuous for 0 < 0 < 1 and y €. Proceeding as in [2, p. 69] and
again employing (2) the conclusion (7) follows.

By Step 1, the conclusion of Theorem 1 follows immediately if
Z = ¢. Assuming Z +# ¢, select z, as in Step 8. Let x, be an arbitrary
point in B(z, 7)), and let p., be the largest value for which B(x,,
20,)N Z = ¢. Clearly there is a point z* which lies in 0B(z, 2)
and is on the boundary of B(z, 20,). By Step 2, we can extend
%~ () by u;(x) in the part of B(x, p,) lying outside 2. So

uw” (@) = sy (2) = | Bla,, le)l‘lg uy (@')da’

B(zl,le)
— | B(a, pxl)x-lg (@)

B(oy,0g,

> A, Bz, 0.) S W (&/)da

B(xl,le

> 47 4,| Bz, 40,)|" j
B(z*,“’xl)
= —4NA0u_(z*, 4p’1) z —'4NA0A1

u(z")dx’

by (7). Thus % (x) is bounded in B(z,, r,). Thus z,¢ Z, a contradiction

based on the assumption that Z == ¢; thus Z = ¢ and Theorem 1 is
established.

4. Proof of Theorem 2. The theorem will follow directly from

Step 4. Let. f(y) satisfy (3) and set h(x) = PI(f, x). Then hg(x,
o) satisfies (1) and (2).

To see this, set v(x) = u(x) — h(x); then

v(@, 0) = [u — hl(x, p) = uslr, 0) + ki, 0)

so v(x, p) satisfies (1) and (2) since both wu,(z, p) and hyx, o) do. So
by Theorem 1, 0 < »(x) and thus

o(w) = | Gla, #)ax@) + 9(@)
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with all the terms nonnegative. So g(x, o) satisfies (1) and (2) and
thus 0 < g(x); clearly then 0 < —g(x) and g(x) = 0, whereby (4) follows.

Proof of Step 4. For y,c 02, there is a v and a 0 < o, such that

o | i - fwldy <5 for 0 <o,
Clearly we can assume that f(y,) = 0. Consider

B, o |, |0 epests - 1Y) dos@is

Blug,0) Jo2

e R o T 0T N B e N
GB(y(,20) 82-0L(yp,20) Liyg, )

—ylrde| f(y)| doy(y)
=1 + L.
In the second integral we have 12|y, — v < |o — y| < 2|y, — y|, which

gives

L=dp|  15@)]ly - 5l

90—3Byg,

=ap | r)lds e

where s{y,, ) = 0B(y,, ) N 02

I

r 1
aor '\ @) ds. |
0 Jslyy,r’) 120
’ 00 (L (Nl o ) ,
A P+ § ) ds. () }dr
20 £y 0 Jslyy.r’)

= Ay + 0(10) as 0 —0.

For I, we use the inequality

| a-tepjosie—ylde= | @~ lepjose - g de
JBlyp.) Blyp.20)
to obtain
L= 4B, o, @—ledle -y e @)l
B{yg,20) 3B(yy,20)
a0 rw)ldy
0B(yy,20)

= Ay,

which shows that h.(x, 0) satisfies (2). Since 7 can be taken arbi-
trarily small for almost every y,€ 0@, h,(x, p) also satisfies (1).
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5. Converse to Theorem 1. Let u(x) = ggG(x, 2)dn(x'), with
w(z) in L, on 2. Zygmund constructed, see [5, p. 644], such a u(x)
which fails to have a finite nontangential limit at every point of the
boundary of unit disc. Even so, Tolsted and Solomentseff have
established in R* and R" respectively that w# must have radial limit
zero a.e. along any nontangential ray. However, Zygmund’s example
as well as the other examples in [5], have a zero mean continuous
boundary limit a.e., i.e., they satisfy (2).

Open Question: Is there an L,, Green potential which does not
satisfy (2)7"

It is interesting to note that continuity at a boundary point y,
implies mean continuity at y, which implies nontangential limit at y,
for harmonic functions. From the above examples, we see that this
hierarchy fails for superharmonic functions. Furthermore it is not
clear that mean continuity at y, implies a radial limit at y, for
superharmonic functions.
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